- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Language
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Ekaterina Samylovskaya; Alexey Makhovikov; Alexander Lutonin; Dmitry Medvedev; Regina-Elizaveta Kudryavtseva;The paper is devoted to the analysis of the current and the forecast of the prospective state of introducing digital technologies into the oil and gas mining industry of the Russian Arctic. The authors of the paper analyzed the global trends that define the process of digital technologies’ introduction into the oil and gas mining industry. They also reviewed the Russian companies’ experience in this sphere. The main trends and prospects for the development of oil and gas resources extraction in the Russian Arctic in the digitalization sphere were identified. Together with this, the researchers considered prospects for digital technologies’ introduction into the oil and gas industry, observing their competition with RES. As a result, the authors have come to the following conclusions: (1) in Russian companies, digitalization is being more actively introduced into the processes of general enterprise management. (2) The main purpose of Russian oil and gas sector digitalization is to increase the efficiency of business process management, while the key constraining factors of digitalization are the lack of qualified personnel, lack of material and technical base and cyber-security threats aggravation. (3) The prospects of introducing a new package of sanctions can become both an incentive for a qualitative leap in Russian software development/implementation and an obstacle to the development of Arctic projects due to their rise in price. (4) The COVID-19 pandemic factor is one of the incentives for the widespread introduction of production and various business processes automation in the oil and gas industry, as well as the development of digital communications. (5) The leader in the digital technology development industry among Russian oil and gas companies is “Gazprom Neft” PJSC, followed by “NK Rosneft” PJSC. (6) “Gazprom” PJSC continues to lag behind in the sphere of digitalization; however, qualitative changes here should be expected in 2022. (7) The “sensitivity parameters” influencing the industry digitalization process in the Arctic region are the high dependence on foreign technological solutions and software, characteristics of the entire Russian oil and gas industry, and the problem of ensuring cybersecurity in Arctic oil and gas projects and power outages. (8) For the Arctic regions, the use of RES as the main source of electricity is the most optimal and promising solution; however, hydrocarbon energy will still dominate the market in the foreseeable future.
Resources arrow_drop_down ResourcesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9276/11/3/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/resources11030029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources arrow_drop_down ResourcesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9276/11/3/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/resources11030029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Записки Горного института Authors: E. V. Katuntsov; Ya. Kultan; A. B. Makhovikov;The article shows the advantages of using modern electronic learning tools in the training of specialists for the mineral and raw materials complex and considers the basic principles of organizing training using these tools. The experience of using electronic learning tools using foreign teaching materials and involving foreign professors is described. A special attention is given to the electronic learning environment of the Cisco Networking Academy Cisco NetAcad. The experience of teaching at the Networking Academy of the Saint-Petersburg Mining University is described. Details are given to modern virtual environments for laboratory work, such as Cisco Packet Tracer, GNS3 and Emulated Virtual Environment. The experience of using electronic learning technologies at the University of Economics of Bratislava is considered. It actively cooperates with a number of universities of other countries, such as the University of International Business (Almaty), the Eurasian National University named after LN Gumilyov (Astana) and the Institute of Social and Humanitarian Knowledge (Kazan). В статье показаны преимущества использования современных средств электронного обучения при подготовке специалистов для минерально-сырьевого комплекса и рассмотрены основные принципы организации обучения с использованием этих средств. Описывается опыт использования средств электронного обучения с использованием зарубежных учебно-методических материалов и привлечением иностранных профессоров. Особое внимание уделяется рассмотрению среды электронного обучения Сетевой академии Cisco Cisco NetAcad. Описывается опыт преподавания в Сетевой академии Санкт-Петербургского горного университета. Подробно рассматриваются современные виртуальные среды для проведения лабораторных работ, такие как Cisco Packet Tracer, GNS3 и Emulated Virtual Environment. Рассмотрен опыт использования технологий электронного обучения в Экономическом университете Братиславы, который активно сотрудничает с рядом университетов других стран, таких как Университет международного бизнеса (Алматы), Евразийский национальный университет имени Л.Н.Гумилева (Астана) и Институт социальных и гуманитарных знаний (Казань). №4 (226) (2017)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25515/pmi.2017.4.503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25515/pmi.2017.4.503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Sergei Kryltcov; Aleksei Makhovikov; Mariia Korobitcyna;doi: 10.3390/sym13030460
The paper is devoted to the development of the structure of a fast and flexible data collecting system based on the proposed approach to measure power quality indicators in three-phase medium-voltage distribution grids with an example of a Mikhailovsky mining and processing plant. The approach utilizes the properties of a space vector, obtained from grid currents and voltages with disturbed waveform, to allow faster extraction of the harmonic components compared to traditional approaches, based on the direct Fourier-transform applied to a line or phase values. During the study, the concept of a universal measurement device was introduced, which allows fast estimation of the following values at the grid node: magnitudes and phases of voltage and current harmonic components, active and reactive power of harmonics and fundamental components, positive and negative instantaneous powers. The structure of interconnected measurement and control units for the considered grid node with simultaneous operation of two active variable frequency drives with active rectifiers was proposed in accordance with a concept of the Internet of things. The benefits of the proposed solution are shown by the example of the model of the grid node with two operating draglines and nonlinear load, which was developed in MATLAB/Simulink software. The proposed approach was utilized to produce distributed references for control systems of grid inverters to compensate nonlinear currents, which allowed to significantly improve THDi of the grid node input power.
Symmetry arrow_drop_down SymmetryOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-8994/13/3/460/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym13030460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Symmetry arrow_drop_down SymmetryOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-8994/13/3/460/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym13030460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Ekaterina Samylovskaya; Alexey Makhovikov; Alexander Lutonin; Dmitry Medvedev; Regina-Elizaveta Kudryavtseva;The paper is devoted to the analysis of the current and the forecast of the prospective state of introducing digital technologies into the oil and gas mining industry of the Russian Arctic. The authors of the paper analyzed the global trends that define the process of digital technologies’ introduction into the oil and gas mining industry. They also reviewed the Russian companies’ experience in this sphere. The main trends and prospects for the development of oil and gas resources extraction in the Russian Arctic in the digitalization sphere were identified. Together with this, the researchers considered prospects for digital technologies’ introduction into the oil and gas industry, observing their competition with RES. As a result, the authors have come to the following conclusions: (1) in Russian companies, digitalization is being more actively introduced into the processes of general enterprise management. (2) The main purpose of Russian oil and gas sector digitalization is to increase the efficiency of business process management, while the key constraining factors of digitalization are the lack of qualified personnel, lack of material and technical base and cyber-security threats aggravation. (3) The prospects of introducing a new package of sanctions can become both an incentive for a qualitative leap in Russian software development/implementation and an obstacle to the development of Arctic projects due to their rise in price. (4) The COVID-19 pandemic factor is one of the incentives for the widespread introduction of production and various business processes automation in the oil and gas industry, as well as the development of digital communications. (5) The leader in the digital technology development industry among Russian oil and gas companies is “Gazprom Neft” PJSC, followed by “NK Rosneft” PJSC. (6) “Gazprom” PJSC continues to lag behind in the sphere of digitalization; however, qualitative changes here should be expected in 2022. (7) The “sensitivity parameters” influencing the industry digitalization process in the Arctic region are the high dependence on foreign technological solutions and software, characteristics of the entire Russian oil and gas industry, and the problem of ensuring cybersecurity in Arctic oil and gas projects and power outages. (8) For the Arctic regions, the use of RES as the main source of electricity is the most optimal and promising solution; however, hydrocarbon energy will still dominate the market in the foreseeable future.
Resources arrow_drop_down ResourcesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9276/11/3/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/resources11030029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources arrow_drop_down ResourcesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-9276/11/3/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/resources11030029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Записки Горного института Authors: E. V. Katuntsov; Ya. Kultan; A. B. Makhovikov;The article shows the advantages of using modern electronic learning tools in the training of specialists for the mineral and raw materials complex and considers the basic principles of organizing training using these tools. The experience of using electronic learning tools using foreign teaching materials and involving foreign professors is described. A special attention is given to the electronic learning environment of the Cisco Networking Academy Cisco NetAcad. The experience of teaching at the Networking Academy of the Saint-Petersburg Mining University is described. Details are given to modern virtual environments for laboratory work, such as Cisco Packet Tracer, GNS3 and Emulated Virtual Environment. The experience of using electronic learning technologies at the University of Economics of Bratislava is considered. It actively cooperates with a number of universities of other countries, such as the University of International Business (Almaty), the Eurasian National University named after LN Gumilyov (Astana) and the Institute of Social and Humanitarian Knowledge (Kazan). В статье показаны преимущества использования современных средств электронного обучения при подготовке специалистов для минерально-сырьевого комплекса и рассмотрены основные принципы организации обучения с использованием этих средств. Описывается опыт использования средств электронного обучения с использованием зарубежных учебно-методических материалов и привлечением иностранных профессоров. Особое внимание уделяется рассмотрению среды электронного обучения Сетевой академии Cisco Cisco NetAcad. Описывается опыт преподавания в Сетевой академии Санкт-Петербургского горного университета. Подробно рассматриваются современные виртуальные среды для проведения лабораторных работ, такие как Cisco Packet Tracer, GNS3 и Emulated Virtual Environment. Рассмотрен опыт использования технологий электронного обучения в Экономическом университете Братиславы, который активно сотрудничает с рядом университетов других стран, таких как Университет международного бизнеса (Алматы), Евразийский национальный университет имени Л.Н.Гумилева (Астана) и Институт социальных и гуманитарных знаний (Казань). №4 (226) (2017)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25515/pmi.2017.4.503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25515/pmi.2017.4.503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Sergei Kryltcov; Aleksei Makhovikov; Mariia Korobitcyna;doi: 10.3390/sym13030460
The paper is devoted to the development of the structure of a fast and flexible data collecting system based on the proposed approach to measure power quality indicators in three-phase medium-voltage distribution grids with an example of a Mikhailovsky mining and processing plant. The approach utilizes the properties of a space vector, obtained from grid currents and voltages with disturbed waveform, to allow faster extraction of the harmonic components compared to traditional approaches, based on the direct Fourier-transform applied to a line or phase values. During the study, the concept of a universal measurement device was introduced, which allows fast estimation of the following values at the grid node: magnitudes and phases of voltage and current harmonic components, active and reactive power of harmonics and fundamental components, positive and negative instantaneous powers. The structure of interconnected measurement and control units for the considered grid node with simultaneous operation of two active variable frequency drives with active rectifiers was proposed in accordance with a concept of the Internet of things. The benefits of the proposed solution are shown by the example of the model of the grid node with two operating draglines and nonlinear load, which was developed in MATLAB/Simulink software. The proposed approach was utilized to produce distributed references for control systems of grid inverters to compensate nonlinear currents, which allowed to significantly improve THDi of the grid node input power.
Symmetry arrow_drop_down SymmetryOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-8994/13/3/460/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym13030460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Symmetry arrow_drop_down SymmetryOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-8994/13/3/460/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym13030460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu