- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Hopkins, C. R.; Roberts, S. I.; Caveen, A. J.; Graham, C.; Burns, N. M.;Seafood is a globally traded commodity, often involving complex supply chains which have varying degrees of traceability. A robust traceability system for seafood supply chains enables the collection and communication of key information about catch and fisheries origins vital for assurance of the legality and sustainability of seafood products. End-to-end traceability is increasingly demanded by retailers, consumers, NGOs and regulatory bodies to ensure food safety, deter IUU fishing and verify sustainable and ethical credentials. Here, we map three UK seafood supply chains and evaluate traceability performance in: Dover sole landed in the south west of England, North-East Atlantic (NEA) mackerel landed at Peterhead, Scotland, and brown crab and European lobster, landed at Bridlington, England. Through a comparative analysis of traceability performance, this study suggests improvements to the technologies, processes, and systems for traceability in the seafood sector. The application of monitoring technologies and regulatory changes across the sector have increased traceability and potentially reduced instances of IUU fishing. While shorter supply chains are more likely to achieve end-to-end traceability, vulnerable nodes in processing and distribution networks may result in a loss of seafood traceability. While traceability systems may provide sustainability information on seafood, a high level of traceability performance does not necessarily equate to a sustainable source fishery. Encouragingly, while UK seafood supply chains are meeting minimum regulatory requirements for traceability, in the present study, many stakeholders have indicated ambitions towards traceability best practice in order to provide confidence and trust in the UK fishing industry.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2023.105910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2023.105910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Hopkins, C. R.; Roberts, S. I.; Caveen, A. J.; Graham, C.; Burns, N. M.;Seafood is a globally traded commodity, often involving complex supply chains which have varying degrees of traceability. A robust traceability system for seafood supply chains enables the collection and communication of key information about catch and fisheries origins vital for assurance of the legality and sustainability of seafood products. End-to-end traceability is increasingly demanded by retailers, consumers, NGOs and regulatory bodies to ensure food safety, deter IUU fishing and verify sustainable and ethical credentials. Here, we map three UK seafood supply chains and evaluate traceability performance in: Dover sole landed in the south west of England, North-East Atlantic (NEA) mackerel landed at Peterhead, Scotland, and brown crab and European lobster, landed at Bridlington, England. Through a comparative analysis of traceability performance, this study suggests improvements to the technologies, processes, and systems for traceability in the seafood sector. The application of monitoring technologies and regulatory changes across the sector have increased traceability and potentially reduced instances of IUU fishing. While shorter supply chains are more likely to achieve end-to-end traceability, vulnerable nodes in processing and distribution networks may result in a loss of seafood traceability. While traceability systems may provide sustainability information on seafood, a high level of traceability performance does not necessarily equate to a sustainable source fishery. Encouragingly, while UK seafood supply chains are meeting minimum regulatory requirements for traceability, in the present study, many stakeholders have indicated ambitions towards traceability best practice in order to provide confidence and trust in the UK fishing industry.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2023.105910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2023.105910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu