- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Xianhui Zhang; Hao Jia; Lianfeng Zou; Yaobin Xu; Linqin Mu; Zhijie Yang; Mark H. Engelhard; Ju-Myung Kim; Jiangtao Hu; Bethany E. Matthews; Chaojiang Niu; Chongmin Wang; Huolin Xin; Feng Lin; Wu Xu;Cobalt (Co)-free ultrahigh-nickel (Ni) layered oxides exhibit dual competitive advantages in reducing the cathode cost and boosting the energy density, promising the sustainable development of batt...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Xianhui Zhang; Hao Jia; Lianfeng Zou; Yaobin Xu; Linqin Mu; Zhijie Yang; Mark H. Engelhard; Ju-Myung Kim; Jiangtao Hu; Bethany E. Matthews; Chaojiang Niu; Chongmin Wang; Huolin Xin; Feng Lin; Wu Xu;Cobalt (Co)-free ultrahigh-nickel (Ni) layered oxides exhibit dual competitive advantages in reducing the cathode cost and boosting the energy density, promising the sustainable development of batt...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | NNCI: San Diego Nanotechn...NSF| NNCI: San Diego Nanotechnology Infrastructure (SDNI)Zhaohui Wu; Chunyang Wang; Zeyu Hui; Haodong Liu; Shen Wang; Sicen Yu; Xing Xing; John Holoubek; Qiushi Miao; Huolin L. Xin; Ping Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | NNCI: San Diego Nanotechn...NSF| NNCI: San Diego Nanotechnology Infrastructure (SDNI)Zhaohui Wu; Chunyang Wang; Zeyu Hui; Haodong Liu; Shen Wang; Sicen Yu; Xing Xing; John Holoubek; Qiushi Miao; Huolin L. Xin; Ping Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | UCI MRSEC: Materials Disc...NSF| UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge ControlRui Zhang; Chunyang Wang; Peichao Zou; Ruoqian Lin; Lu Ma; Tianyi Li; In-hui Hwang; Wenqian Xu; Chengjun Sun; Steve Trask; Huolin L. Xin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | UCI MRSEC: Materials Disc...NSF| UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge ControlRui Zhang; Chunyang Wang; Peichao Zou; Ruoqian Lin; Lu Ma; Tianyi Li; In-hui Hwang; Wenqian Xu; Chengjun Sun; Steve Trask; Huolin L. Xin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Feng Lin; Dennis Nordlund; Marca M. Doeff; Huolin L. Xin; Isaac M. Markus; Isaac M. Markus; Tsu-Chien Weng;doi: 10.1039/c4ee01400f
Chemical and structural evolution in battery materials influences properties relevant to ionic and electronic transport and ultimately impacts the battery performance. Although chemical and structural gradients have been observed in several cathode materials, the origin(s) of these phenomena are poorly understood. Via high-throughput core-level spectroscopies {i.e., X-ray absorption spectroscopy (XAS), depth-profiled X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS)}, as well as scanning transmission electron microscopy (STEM), the present study seeks to achieve mechanistic understanding for these phenomena in a stoichiometric Rm layered cathode material (e.g., LiNixMnxCo1−2xO2, NMC). We observed that the surfaces of particles in the composite electrode are complicated by the presence of a surface reaction layer resulting from electrolyte decomposition. In large particle ensembles, the global nickel oxidation state switches between Ni2+ and Ni2+x (x = 1–2) during charging/discharging processes, and hole states are also created at the O2p level due to the TM3d–O2p hybridization states. In primary particles, the surface is less oxidized than the bulk counterpart of the same particle whenever the particle has been cycled. This is partially attributed to the reconstruction from an Rm structure to an Fmm structure at the surfaces of NMC particles. This work provides a unique insight into correlating crystal structures with charge compensation mechanisms and performance fading in stoichiometric layered cathode materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Feng Lin; Dennis Nordlund; Marca M. Doeff; Huolin L. Xin; Isaac M. Markus; Isaac M. Markus; Tsu-Chien Weng;doi: 10.1039/c4ee01400f
Chemical and structural evolution in battery materials influences properties relevant to ionic and electronic transport and ultimately impacts the battery performance. Although chemical and structural gradients have been observed in several cathode materials, the origin(s) of these phenomena are poorly understood. Via high-throughput core-level spectroscopies {i.e., X-ray absorption spectroscopy (XAS), depth-profiled X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS)}, as well as scanning transmission electron microscopy (STEM), the present study seeks to achieve mechanistic understanding for these phenomena in a stoichiometric Rm layered cathode material (e.g., LiNixMnxCo1−2xO2, NMC). We observed that the surfaces of particles in the composite electrode are complicated by the presence of a surface reaction layer resulting from electrolyte decomposition. In large particle ensembles, the global nickel oxidation state switches between Ni2+ and Ni2+x (x = 1–2) during charging/discharging processes, and hole states are also created at the O2p level due to the TM3d–O2p hybridization states. In primary particles, the surface is less oxidized than the bulk counterpart of the same particle whenever the particle has been cycled. This is partially attributed to the reconstruction from an Rm structure to an Fmm structure at the surfaces of NMC particles. This work provides a unique insight into correlating crystal structures with charge compensation mechanisms and performance fading in stoichiometric layered cathode materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Kyung-Wan Nam; Enyuan Hu; Seong-Min Bak; Cherno Jaye; K. Amine; Xiao-Qing Yang; Ruoqian Lin; Ruoqian Lin; Xuanxuan Bi; Daniel A. Fischer; Jun Lu; Xiqian Yu; Xiqian Yu; Huolin L. Xin;Voltage fade is a major problem in battery applications for high-energy lithium- and manganese-rich (LMR) layered materials. As a result of the complexity of the LMR structure, the voltage fade mechanism is not well understood. Here we conduct both in situ and ex situ studies on a typical LMR material (Li1.2Ni0.15Co0.1Mn0.55O2) during charge–discharge cycling, using multi-length-scale X-ray spectroscopic and three-dimensional electron microscopic imaging techniques. Through probing from the surface to the bulk, and from individual to whole ensembles of particles, we show that the average valence state of each type of transition metal cation is continuously reduced, which is attributed to oxygen release from the LMR material. Such reductions activate the lower-voltage Mn3+/Mn4+ and Co2+/Co3+ redox couples in addition to the original redox couples including Ni2+/Ni3+, Ni3+/Ni4+ and O2−/O−, directly leading to the voltage fade. We also show that the oxygen release causes microstructural defects such as the formation of large pores within particles, which also contributes to the voltage fade. Surface coating and modification methods are suggested to be effective in suppressing the voltage fade through reducing the oxygen release. Voltage decay is a major problem in applications of high-energy Li- and Mn-rich layer-structured battery materials. Here, the authors report the evolution of redox couples as the origin of the voltage decay and discuss strategies to suppress the problem.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 815 citations 815 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Kyung-Wan Nam; Enyuan Hu; Seong-Min Bak; Cherno Jaye; K. Amine; Xiao-Qing Yang; Ruoqian Lin; Ruoqian Lin; Xuanxuan Bi; Daniel A. Fischer; Jun Lu; Xiqian Yu; Xiqian Yu; Huolin L. Xin;Voltage fade is a major problem in battery applications for high-energy lithium- and manganese-rich (LMR) layered materials. As a result of the complexity of the LMR structure, the voltage fade mechanism is not well understood. Here we conduct both in situ and ex situ studies on a typical LMR material (Li1.2Ni0.15Co0.1Mn0.55O2) during charge–discharge cycling, using multi-length-scale X-ray spectroscopic and three-dimensional electron microscopic imaging techniques. Through probing from the surface to the bulk, and from individual to whole ensembles of particles, we show that the average valence state of each type of transition metal cation is continuously reduced, which is attributed to oxygen release from the LMR material. Such reductions activate the lower-voltage Mn3+/Mn4+ and Co2+/Co3+ redox couples in addition to the original redox couples including Ni2+/Ni3+, Ni3+/Ni4+ and O2−/O−, directly leading to the voltage fade. We also show that the oxygen release causes microstructural defects such as the formation of large pores within particles, which also contributes to the voltage fade. Surface coating and modification methods are suggested to be effective in suppressing the voltage fade through reducing the oxygen release. Voltage decay is a major problem in applications of high-energy Li- and Mn-rich layer-structured battery materials. Here, the authors report the evolution of redox couples as the origin of the voltage decay and discuss strategies to suppress the problem.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 815 citations 815 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Springer Science and Business Media LLC Tsu-Chien Weng; Feng Lin; Yijin Liu; Marca M. Doeff; Dennis Nordlund; Matthew K. Quan; Lei Cheng; Lei Cheng; Yuyi Li; Huolin L. Xin;In technologically important LiNi1−x−yMnxCoyO2 cathode materials, surface reconstruction from a layered to a rock-salt structure is commonly observed under a variety of operating conditions, particularly in Ni-rich compositions. This phenomenon contributes to poor high-voltage cycling performance, impeding attempts to improve the energy density by widening the potential window at which these electrodes operate. Here, using advanced nano-tomography and transmission electron microscopy techniques, we show that hierarchically structured LiNi0.4Mn0.4Co0.2O2 spherical particles, made by a simple spray pyrolysis method, exhibit local elemental segregation such that surfaces are Ni-poor and Mn-rich. The tailored surfaces result in superior resistance to surface reconstruction compared with those of conventional LiNi0.4Mn0.4Co0.2O2, as shown by soft X-ray absorption spectroscopy experiments. The improved high-voltage cycling behaviour exhibited by cells containing these cathodes demonstrates the importance of controlling LiNi1−x−yMnxCoyO2 surface chemistry for successful development of high-energy lithium ion batteries. Advanced batteries require careful control over the interfacial properties of their constituent materials. This study designs hierarchically structured cathode materials that are resistant to surface reconstruction, leading to improved cycling performance.
Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 230 citations 230 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Springer Science and Business Media LLC Tsu-Chien Weng; Feng Lin; Yijin Liu; Marca M. Doeff; Dennis Nordlund; Matthew K. Quan; Lei Cheng; Lei Cheng; Yuyi Li; Huolin L. Xin;In technologically important LiNi1−x−yMnxCoyO2 cathode materials, surface reconstruction from a layered to a rock-salt structure is commonly observed under a variety of operating conditions, particularly in Ni-rich compositions. This phenomenon contributes to poor high-voltage cycling performance, impeding attempts to improve the energy density by widening the potential window at which these electrodes operate. Here, using advanced nano-tomography and transmission electron microscopy techniques, we show that hierarchically structured LiNi0.4Mn0.4Co0.2O2 spherical particles, made by a simple spray pyrolysis method, exhibit local elemental segregation such that surfaces are Ni-poor and Mn-rich. The tailored surfaces result in superior resistance to surface reconstruction compared with those of conventional LiNi0.4Mn0.4Co0.2O2, as shown by soft X-ray absorption spectroscopy experiments. The improved high-voltage cycling behaviour exhibited by cells containing these cathodes demonstrates the importance of controlling LiNi1−x−yMnxCoyO2 surface chemistry for successful development of high-energy lithium ion batteries. Advanced batteries require careful control over the interfacial properties of their constituent materials. This study designs hierarchically structured cathode materials that are resistant to surface reconstruction, leading to improved cycling performance.
Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 230 citations 230 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Authors: Peichao Zou; Chunyang Wang; Yubin He; Huolin L. Xin;doi: 10.1039/d3ee02657d
We propose a universal solid electrolyte design that broadens the selection of ceramic LICs for solid-state lithium metal batteries, without requirements of electronic insulation or (electro)chemical stability.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Authors: Peichao Zou; Chunyang Wang; Yubin He; Huolin L. Xin;doi: 10.1039/d3ee02657d
We propose a universal solid electrolyte design that broadens the selection of ceramic LICs for solid-state lithium metal batteries, without requirements of electronic insulation or (electro)chemical stability.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Royal Society of Chemistry (RSC) Jie Wang; Zexing Wu; Lili Han; Cuijuan Xuan; Jing Zhu; Weiping Xiao; Jianzhong Wu; Huolin L. Xin; Deli Wang;doi: 10.1039/c7se00085e
Nitrogen doped carbon supported Ni@NiO, MnO and Co@CoO catalysts have been successfully preparedviaa simple one-pot synthetic method. As air catalysts in aqueous rechargeable Zn–air batteries, Co@CoO/NDC-700 exhibits much better bifunctional catalytic and battery performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Royal Society of Chemistry (RSC) Jie Wang; Zexing Wu; Lili Han; Cuijuan Xuan; Jing Zhu; Weiping Xiao; Jianzhong Wu; Huolin L. Xin; Deli Wang;doi: 10.1039/c7se00085e
Nitrogen doped carbon supported Ni@NiO, MnO and Co@CoO catalysts have been successfully preparedviaa simple one-pot synthetic method. As air catalysts in aqueous rechargeable Zn–air batteries, Co@CoO/NDC-700 exhibits much better bifunctional catalytic and battery performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2011Embargo end date: 01 Jan 2011Publisher:American Chemical Society (ACS) Junliang Zhang; David A. Muller; Lena F. Kourkoutis; Julia A. Mundy; Frederick T. Wagner; Robert Hovden; Randi Cabezas; Zhongyi Liu; Rohit Makharia; Nalini P. Subramanian; Huolin L. Xin;pmid: 22122715
arXiv: http://arxiv.org/abs/1111.6697 , 1111.6697
The thousandfold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox - how to obtain atomic-resolution chemical structure in individual nanoparticles, yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering. 28 pages, 5 figures, accepted, nano letters
Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 161 citations 161 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2011Embargo end date: 01 Jan 2011Publisher:American Chemical Society (ACS) Junliang Zhang; David A. Muller; Lena F. Kourkoutis; Julia A. Mundy; Frederick T. Wagner; Robert Hovden; Randi Cabezas; Zhongyi Liu; Rohit Makharia; Nalini P. Subramanian; Huolin L. Xin;pmid: 22122715
arXiv: http://arxiv.org/abs/1111.6697 , 1111.6697
The thousandfold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox - how to obtain atomic-resolution chemical structure in individual nanoparticles, yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering. 28 pages, 5 figures, accepted, nano letters
Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 161 citations 161 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Xianhui Zhang; Hao Jia; Lianfeng Zou; Yaobin Xu; Linqin Mu; Zhijie Yang; Mark H. Engelhard; Ju-Myung Kim; Jiangtao Hu; Bethany E. Matthews; Chaojiang Niu; Chongmin Wang; Huolin Xin; Feng Lin; Wu Xu;Cobalt (Co)-free ultrahigh-nickel (Ni) layered oxides exhibit dual competitive advantages in reducing the cathode cost and boosting the energy density, promising the sustainable development of batt...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Xianhui Zhang; Hao Jia; Lianfeng Zou; Yaobin Xu; Linqin Mu; Zhijie Yang; Mark H. Engelhard; Ju-Myung Kim; Jiangtao Hu; Bethany E. Matthews; Chaojiang Niu; Chongmin Wang; Huolin Xin; Feng Lin; Wu Xu;Cobalt (Co)-free ultrahigh-nickel (Ni) layered oxides exhibit dual competitive advantages in reducing the cathode cost and boosting the energy density, promising the sustainable development of batt...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c00374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | NNCI: San Diego Nanotechn...NSF| NNCI: San Diego Nanotechnology Infrastructure (SDNI)Zhaohui Wu; Chunyang Wang; Zeyu Hui; Haodong Liu; Shen Wang; Sicen Yu; Xing Xing; John Holoubek; Qiushi Miao; Huolin L. Xin; Ping Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | NNCI: San Diego Nanotechn...NSF| NNCI: San Diego Nanotechnology Infrastructure (SDNI)Zhaohui Wu; Chunyang Wang; Zeyu Hui; Haodong Liu; Shen Wang; Sicen Yu; Xing Xing; John Holoubek; Qiushi Miao; Huolin L. Xin; Ping Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | UCI MRSEC: Materials Disc...NSF| UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge ControlRui Zhang; Chunyang Wang; Peichao Zou; Ruoqian Lin; Lu Ma; Tianyi Li; In-hui Hwang; Wenqian Xu; Chengjun Sun; Steve Trask; Huolin L. Xin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | UCI MRSEC: Materials Disc...NSF| UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge ControlRui Zhang; Chunyang Wang; Peichao Zou; Ruoqian Lin; Lu Ma; Tianyi Li; In-hui Hwang; Wenqian Xu; Chengjun Sun; Steve Trask; Huolin L. Xin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01267-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Feng Lin; Dennis Nordlund; Marca M. Doeff; Huolin L. Xin; Isaac M. Markus; Isaac M. Markus; Tsu-Chien Weng;doi: 10.1039/c4ee01400f
Chemical and structural evolution in battery materials influences properties relevant to ionic and electronic transport and ultimately impacts the battery performance. Although chemical and structural gradients have been observed in several cathode materials, the origin(s) of these phenomena are poorly understood. Via high-throughput core-level spectroscopies {i.e., X-ray absorption spectroscopy (XAS), depth-profiled X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS)}, as well as scanning transmission electron microscopy (STEM), the present study seeks to achieve mechanistic understanding for these phenomena in a stoichiometric Rm layered cathode material (e.g., LiNixMnxCo1−2xO2, NMC). We observed that the surfaces of particles in the composite electrode are complicated by the presence of a surface reaction layer resulting from electrolyte decomposition. In large particle ensembles, the global nickel oxidation state switches between Ni2+ and Ni2+x (x = 1–2) during charging/discharging processes, and hole states are also created at the O2p level due to the TM3d–O2p hybridization states. In primary particles, the surface is less oxidized than the bulk counterpart of the same particle whenever the particle has been cycled. This is partially attributed to the reconstruction from an Rm structure to an Fmm structure at the surfaces of NMC particles. This work provides a unique insight into correlating crystal structures with charge compensation mechanisms and performance fading in stoichiometric layered cathode materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Feng Lin; Dennis Nordlund; Marca M. Doeff; Huolin L. Xin; Isaac M. Markus; Isaac M. Markus; Tsu-Chien Weng;doi: 10.1039/c4ee01400f
Chemical and structural evolution in battery materials influences properties relevant to ionic and electronic transport and ultimately impacts the battery performance. Although chemical and structural gradients have been observed in several cathode materials, the origin(s) of these phenomena are poorly understood. Via high-throughput core-level spectroscopies {i.e., X-ray absorption spectroscopy (XAS), depth-profiled X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS)}, as well as scanning transmission electron microscopy (STEM), the present study seeks to achieve mechanistic understanding for these phenomena in a stoichiometric Rm layered cathode material (e.g., LiNixMnxCo1−2xO2, NMC). We observed that the surfaces of particles in the composite electrode are complicated by the presence of a surface reaction layer resulting from electrolyte decomposition. In large particle ensembles, the global nickel oxidation state switches between Ni2+ and Ni2+x (x = 1–2) during charging/discharging processes, and hole states are also created at the O2p level due to the TM3d–O2p hybridization states. In primary particles, the surface is less oxidized than the bulk counterpart of the same particle whenever the particle has been cycled. This is partially attributed to the reconstruction from an Rm structure to an Fmm structure at the surfaces of NMC particles. This work provides a unique insight into correlating crystal structures with charge compensation mechanisms and performance fading in stoichiometric layered cathode materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01400f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Kyung-Wan Nam; Enyuan Hu; Seong-Min Bak; Cherno Jaye; K. Amine; Xiao-Qing Yang; Ruoqian Lin; Ruoqian Lin; Xuanxuan Bi; Daniel A. Fischer; Jun Lu; Xiqian Yu; Xiqian Yu; Huolin L. Xin;Voltage fade is a major problem in battery applications for high-energy lithium- and manganese-rich (LMR) layered materials. As a result of the complexity of the LMR structure, the voltage fade mechanism is not well understood. Here we conduct both in situ and ex situ studies on a typical LMR material (Li1.2Ni0.15Co0.1Mn0.55O2) during charge–discharge cycling, using multi-length-scale X-ray spectroscopic and three-dimensional electron microscopic imaging techniques. Through probing from the surface to the bulk, and from individual to whole ensembles of particles, we show that the average valence state of each type of transition metal cation is continuously reduced, which is attributed to oxygen release from the LMR material. Such reductions activate the lower-voltage Mn3+/Mn4+ and Co2+/Co3+ redox couples in addition to the original redox couples including Ni2+/Ni3+, Ni3+/Ni4+ and O2−/O−, directly leading to the voltage fade. We also show that the oxygen release causes microstructural defects such as the formation of large pores within particles, which also contributes to the voltage fade. Surface coating and modification methods are suggested to be effective in suppressing the voltage fade through reducing the oxygen release. Voltage decay is a major problem in applications of high-energy Li- and Mn-rich layer-structured battery materials. Here, the authors report the evolution of redox couples as the origin of the voltage decay and discuss strategies to suppress the problem.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 815 citations 815 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Kyung-Wan Nam; Enyuan Hu; Seong-Min Bak; Cherno Jaye; K. Amine; Xiao-Qing Yang; Ruoqian Lin; Ruoqian Lin; Xuanxuan Bi; Daniel A. Fischer; Jun Lu; Xiqian Yu; Xiqian Yu; Huolin L. Xin;Voltage fade is a major problem in battery applications for high-energy lithium- and manganese-rich (LMR) layered materials. As a result of the complexity of the LMR structure, the voltage fade mechanism is not well understood. Here we conduct both in situ and ex situ studies on a typical LMR material (Li1.2Ni0.15Co0.1Mn0.55O2) during charge–discharge cycling, using multi-length-scale X-ray spectroscopic and three-dimensional electron microscopic imaging techniques. Through probing from the surface to the bulk, and from individual to whole ensembles of particles, we show that the average valence state of each type of transition metal cation is continuously reduced, which is attributed to oxygen release from the LMR material. Such reductions activate the lower-voltage Mn3+/Mn4+ and Co2+/Co3+ redox couples in addition to the original redox couples including Ni2+/Ni3+, Ni3+/Ni4+ and O2−/O−, directly leading to the voltage fade. We also show that the oxygen release causes microstructural defects such as the formation of large pores within particles, which also contributes to the voltage fade. Surface coating and modification methods are suggested to be effective in suppressing the voltage fade through reducing the oxygen release. Voltage decay is a major problem in applications of high-energy Li- and Mn-rich layer-structured battery materials. Here, the authors report the evolution of redox couples as the origin of the voltage decay and discuss strategies to suppress the problem.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 815 citations 815 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0207-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Springer Science and Business Media LLC Tsu-Chien Weng; Feng Lin; Yijin Liu; Marca M. Doeff; Dennis Nordlund; Matthew K. Quan; Lei Cheng; Lei Cheng; Yuyi Li; Huolin L. Xin;In technologically important LiNi1−x−yMnxCoyO2 cathode materials, surface reconstruction from a layered to a rock-salt structure is commonly observed under a variety of operating conditions, particularly in Ni-rich compositions. This phenomenon contributes to poor high-voltage cycling performance, impeding attempts to improve the energy density by widening the potential window at which these electrodes operate. Here, using advanced nano-tomography and transmission electron microscopy techniques, we show that hierarchically structured LiNi0.4Mn0.4Co0.2O2 spherical particles, made by a simple spray pyrolysis method, exhibit local elemental segregation such that surfaces are Ni-poor and Mn-rich. The tailored surfaces result in superior resistance to surface reconstruction compared with those of conventional LiNi0.4Mn0.4Co0.2O2, as shown by soft X-ray absorption spectroscopy experiments. The improved high-voltage cycling behaviour exhibited by cells containing these cathodes demonstrates the importance of controlling LiNi1−x−yMnxCoyO2 surface chemistry for successful development of high-energy lithium ion batteries. Advanced batteries require careful control over the interfacial properties of their constituent materials. This study designs hierarchically structured cathode materials that are resistant to surface reconstruction, leading to improved cycling performance.
Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 230 citations 230 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Springer Science and Business Media LLC Tsu-Chien Weng; Feng Lin; Yijin Liu; Marca M. Doeff; Dennis Nordlund; Matthew K. Quan; Lei Cheng; Lei Cheng; Yuyi Li; Huolin L. Xin;In technologically important LiNi1−x−yMnxCoyO2 cathode materials, surface reconstruction from a layered to a rock-salt structure is commonly observed under a variety of operating conditions, particularly in Ni-rich compositions. This phenomenon contributes to poor high-voltage cycling performance, impeding attempts to improve the energy density by widening the potential window at which these electrodes operate. Here, using advanced nano-tomography and transmission electron microscopy techniques, we show that hierarchically structured LiNi0.4Mn0.4Co0.2O2 spherical particles, made by a simple spray pyrolysis method, exhibit local elemental segregation such that surfaces are Ni-poor and Mn-rich. The tailored surfaces result in superior resistance to surface reconstruction compared with those of conventional LiNi0.4Mn0.4Co0.2O2, as shown by soft X-ray absorption spectroscopy experiments. The improved high-voltage cycling behaviour exhibited by cells containing these cathodes demonstrates the importance of controlling LiNi1−x−yMnxCoyO2 surface chemistry for successful development of high-energy lithium ion batteries. Advanced batteries require careful control over the interfacial properties of their constituent materials. This study designs hierarchically structured cathode materials that are resistant to surface reconstruction, leading to improved cycling performance.
Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 230 citations 230 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nature Energy arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2015.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Authors: Peichao Zou; Chunyang Wang; Yubin He; Huolin L. Xin;doi: 10.1039/d3ee02657d
We propose a universal solid electrolyte design that broadens the selection of ceramic LICs for solid-state lithium metal batteries, without requirements of electronic insulation or (electro)chemical stability.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Authors: Peichao Zou; Chunyang Wang; Yubin He; Huolin L. Xin;doi: 10.1039/d3ee02657d
We propose a universal solid electrolyte design that broadens the selection of ceramic LICs for solid-state lithium metal batteries, without requirements of electronic insulation or (electro)chemical stability.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02657d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Royal Society of Chemistry (RSC) Jie Wang; Zexing Wu; Lili Han; Cuijuan Xuan; Jing Zhu; Weiping Xiao; Jianzhong Wu; Huolin L. Xin; Deli Wang;doi: 10.1039/c7se00085e
Nitrogen doped carbon supported Ni@NiO, MnO and Co@CoO catalysts have been successfully preparedviaa simple one-pot synthetic method. As air catalysts in aqueous rechargeable Zn–air batteries, Co@CoO/NDC-700 exhibits much better bifunctional catalytic and battery performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Royal Society of Chemistry (RSC) Jie Wang; Zexing Wu; Lili Han; Cuijuan Xuan; Jing Zhu; Weiping Xiao; Jianzhong Wu; Huolin L. Xin; Deli Wang;doi: 10.1039/c7se00085e
Nitrogen doped carbon supported Ni@NiO, MnO and Co@CoO catalysts have been successfully preparedviaa simple one-pot synthetic method. As air catalysts in aqueous rechargeable Zn–air batteries, Co@CoO/NDC-700 exhibits much better bifunctional catalytic and battery performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00085e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2011Embargo end date: 01 Jan 2011Publisher:American Chemical Society (ACS) Junliang Zhang; David A. Muller; Lena F. Kourkoutis; Julia A. Mundy; Frederick T. Wagner; Robert Hovden; Randi Cabezas; Zhongyi Liu; Rohit Makharia; Nalini P. Subramanian; Huolin L. Xin;pmid: 22122715
arXiv: http://arxiv.org/abs/1111.6697 , 1111.6697
The thousandfold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox - how to obtain atomic-resolution chemical structure in individual nanoparticles, yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering. 28 pages, 5 figures, accepted, nano letters
Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 161 citations 161 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2011Embargo end date: 01 Jan 2011Publisher:American Chemical Society (ACS) Junliang Zhang; David A. Muller; Lena F. Kourkoutis; Julia A. Mundy; Frederick T. Wagner; Robert Hovden; Randi Cabezas; Zhongyi Liu; Rohit Makharia; Nalini P. Subramanian; Huolin L. Xin;pmid: 22122715
arXiv: http://arxiv.org/abs/1111.6697 , 1111.6697
The thousandfold increase in data-collection speed enabled by aberration-corrected optics allows us to overcome an electron microscopy paradox - how to obtain atomic-resolution chemical structure in individual nanoparticles, yet record a statistically significant sample from an inhomogeneous population. This allowed us to map hundreds of Pt-Co nanoparticles to show atomic-scale elemental distributions across different stages of the catalyst aging in a proton-exchange-membrane fuel cell, and relate Pt-shell thickness to treatment, particle size, surface orientation, and ordering. 28 pages, 5 figures, accepted, nano letters
Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 161 citations 161 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Nano Letters arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl203975u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu