- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Funded by:EC | SESPerEC| SESPerBianca Baldassarri; Chris Wolverton; Xin Qian; Sossina M. Haile; Jiangang He; Emanuela Mastronardo; Emanuela Mastronardo;handle: 11570/3204171
Two-step, solar thermochemical splitting of water using nonstoichiometric redox-active metal oxides has emerged as an intriguing approach for large-scale hydrogen production. Perovskites have been ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.0c03278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.0c03278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, SpainPublisher:Elsevier BV Funded by:EC | SESPerEC| SESPerWeizi Yuan; Chris Wolverton; Jiangang He; Emanuela Mastronardo; Emanuela Mastronardo; Xin Qian; Bianca Baldassarri; Sossina M. Haile;handle: 10261/230497 , 11570/3204173
Supplemental Information can be found online at https://doi.org/10.1016/j.matt. 2020.11.016. [EN] Variable valence oxides of the perovskite crystal structure haveemerged as promising candidates for solar hydrogen productionvia two-step thermochemical cycling. Here, we report the excep-tional efficacy of the perovskite CaTi0.5Mn0.5O3–d(CTM55) for thisprocess. The combination of intermediate enthalpy, rangingbetween 200 and 280 kJ (mol-O) 1, and large entropy, ranging between 120 and 180 J (mol-O) 1K 1, of CTM55 create favorableconditions for water splitting. The oxidation state changes are domi-nated by Mn, with Ti stabilizing the cubic phase and increasing itsreduction enthalpy. A hydrogen yield of 10.0G0.2 mL g 1isachieved in a cycle between 1,350 C (reduction) and 1,150 C(watersplitting) and a total cycle time of 1.5 h, exceeding all previous fuelproduction reports. The gas evolution rate suggests rapid materialkinetics, and, at 1,150 C and higher, a process primarily limited bythe magnitude of the thermodynamic driving force. This research is funded by the U.S. Department of Energy, through the office of Energy Efficiency and Renewable Energy (EERE) contract DE-EE0008089. The supportfrom the European Union’s Horizon 2020 Research And Innovation Programme un-der the Marie Sklodowska-Curie grant agreement no. 746167 is also acknowledged.This work made use of the Jerome B. Cohen X-Ray Diffraction Facility and the Pulsed Laser Deposition Shared Facility at the Materials Research Center at Northwestern University supported by the National Science Foundation MRSEC program (DMR-1720139) and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205). This work additionally made use of the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS) supported by Northwestern University, The Dow Chemical Company, and DuPont de Nemours, Inc. The APS is a U.S. Department of Energy(DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The authors acknowledge Dr. Timothy Davenport and Dr. Stephen Wilke for help in thermo-chemical hydrogen production measurements, and graduate student Louis Wangfor assistance with Rietveld refinements and for consultation on thermogravimetric measurements. Peer reviewed
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2021License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2020.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 67 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2021License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2020.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, ItalyPublisher:Elsevier BV Xin Qian; Sossina M. Haile; Emanuela Mastronardo; Emanuela Mastronardo; Juan M. Coronado;handle: 11570/3206277
Abstract Recently, CaMnO3 has been proposed as a promising candidate for high temperature thermochemical heat storage. The material reversibly releases oxygen in response to changes in oxygen partial pressure (pO2) in the temperature range (800-1000°C) suitable for Concentrated Solar Power (CSP) plants. However, it undergoes decomposition at pO2
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102793&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102793&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019 Italy, SpainPublisher:AIP Publishing Funded by:EC | SESPerEC| SESPerJuan M. Coronado; Emanuela Mastronardo; Emanuela Mastronardo; Sossina M. Haile; Xin Qian;doi: 10.1063/1.5117754
handle: 10261/230500 , 11570/3204187
[EN] CaMnO3 oxide can be considered a promising candidate for high temperature thermochemical heat storage, since it is able to release oxygen in a wide temperature range (800-1000 °C) at different oxygen partial pressures (pO2) suitable for Concentrated Solar Power (CSP) plants. Moreover, it is composed of earth abundant, inexpensive, non-toxic elements. However, it undergoes decomposition at pO2<0.01 atm and at temperature above 1100 °C. In order to overcome this limitation and to extent the operating temperature range, in this study B-site doping with Fe was used as approach for preventing decomposition. The reaction enthalpy was measured through equilibrium non-stoichiometry curves so that the heat storage capacity could be evaluated. It was demonstrated that Fe-doping prevented CaMnO3 decomposition up to 1200 °C at pO2=0.008 thus widening the operating temperature range and the oxygen reduction extent. In addition, the heat storage capacity (ΔH (kJ/molABO3)) of Fe-CaMnO3 (∼324 kJ/kgABO3) is remarkably higher than that of the un-doped CaMnO3 (∼250 kJ/kgABO3 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N° 74616. Support of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Award DE-EE0008089.0000, is also acknowledged. Peer reviewed
https://aip.scitatio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1063/1.51...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5117754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 29visibility views 29 download downloads 32 Powered bymore_vert https://aip.scitatio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1063/1.51...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5117754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Elsevier BV Haemin Paik; Haemin Paik; Xin Qian; Austin B. Plymill; Strahinja K. Zecevic; Dae-Kwang Lim; Calum R. I. Chisholm; Sossina M. Haile;Summary Production of high-purity hydrogen by thermal-electrochemical decomposition of ammonia at an intermediate temperature of 250°C is demonstrated. The process is enabled by use of a solid-acid-based electrochemical cell (SAEC) in combination with a bilayered anode, comprising a thermal-cracking catalyst layer and a hydrogen electrooxidation catalyst layer. Cs-promoted Ru on carbon nanotubes (Ru/CNT) serves as the thermal decomposition catalyst, and Pt on carbon black mixed with CsH2PO4 is used to catalyze hydrogen electrooxidation. Cells were operated at 250°C with humidified dilute ammonia supplied to the anode and humidified hydrogen supplied to the counter electrode. A current density of 435 mA/cm2 was achieved at a potential of 0.4 V and ammonia flow rate of 30 sccm. With a demonstrated faradic efficiency for hydrogen production of 100%, the process yields hydrogen at a rate of 1.48 m o l H 2 / g c a t h .
Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://doi.org/10.1016/j.joule.2020.10.006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://doi.org/10.1016/j.joule.2020.10.006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, SpainPublisher:Royal Society of Chemistry (RSC) Funded by:NSF | NNCI: Soft and Hybrid Nan..., NSF | MRSEC: Center for Multifu...NSF| NNCI: Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource ,NSF| MRSEC: Center for Multifunctional MaterialsAuthors: Emanuela Mastronardo; Xin Qian; Juan M. Coronado; Sossina M. Haile;doi: 10.1039/d2ta07779e
handle: 10261/357687 , 11570/3256496
By co-doping CaMnO3 with La and Fe (LaxCa1−xMn1−yFeyO3), it is possible to tailor the material thermodynamics, reduction extent, together with operating temperature range for thermochemical heat storage application.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCJournal of Materials Chemistry AArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ta07779e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 28 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCJournal of Materials Chemistry AArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ta07779e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Spain, ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SESPerEC| SESPerJuan M. Coronado; Emanuela Mastronardo; Emanuela Mastronardo; Xin Qian; Sossina M. Haile;doi: 10.1039/d0ta02031a
handle: 10261/229435 , 11570/3204167
The CaFe0.1Mn0.9O3−δ0 oxide can reversibly release oxygen over a relatively wide range of temperatures and oxygen partial pressures and its favourable thermodynamic properties make it a promising candidate for thermochemical heat storage.
Archivio Istituziona... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Materials Chemistry AArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta02031a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 58 Powered bymore_vert Archivio Istituziona... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Materials Chemistry AArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta02031a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jiahui Lou; Zhenyu Tian; Yunyun Wu; Xiao Li; Xin Qian; Sossina M. Haile; Yong Hao;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Funded by:EC | SESPerEC| SESPerBianca Baldassarri; Chris Wolverton; Xin Qian; Sossina M. Haile; Jiangang He; Emanuela Mastronardo; Emanuela Mastronardo;handle: 11570/3204171
Two-step, solar thermochemical splitting of water using nonstoichiometric redox-active metal oxides has emerged as an intriguing approach for large-scale hydrogen production. Perovskites have been ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.0c03278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.0c03278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, SpainPublisher:Elsevier BV Funded by:EC | SESPerEC| SESPerWeizi Yuan; Chris Wolverton; Jiangang He; Emanuela Mastronardo; Emanuela Mastronardo; Xin Qian; Bianca Baldassarri; Sossina M. Haile;handle: 10261/230497 , 11570/3204173
Supplemental Information can be found online at https://doi.org/10.1016/j.matt. 2020.11.016. [EN] Variable valence oxides of the perovskite crystal structure haveemerged as promising candidates for solar hydrogen productionvia two-step thermochemical cycling. Here, we report the excep-tional efficacy of the perovskite CaTi0.5Mn0.5O3–d(CTM55) for thisprocess. The combination of intermediate enthalpy, rangingbetween 200 and 280 kJ (mol-O) 1, and large entropy, ranging between 120 and 180 J (mol-O) 1K 1, of CTM55 create favorableconditions for water splitting. The oxidation state changes are domi-nated by Mn, with Ti stabilizing the cubic phase and increasing itsreduction enthalpy. A hydrogen yield of 10.0G0.2 mL g 1isachieved in a cycle between 1,350 C (reduction) and 1,150 C(watersplitting) and a total cycle time of 1.5 h, exceeding all previous fuelproduction reports. The gas evolution rate suggests rapid materialkinetics, and, at 1,150 C and higher, a process primarily limited bythe magnitude of the thermodynamic driving force. This research is funded by the U.S. Department of Energy, through the office of Energy Efficiency and Renewable Energy (EERE) contract DE-EE0008089. The supportfrom the European Union’s Horizon 2020 Research And Innovation Programme un-der the Marie Sklodowska-Curie grant agreement no. 746167 is also acknowledged.This work made use of the Jerome B. Cohen X-Ray Diffraction Facility and the Pulsed Laser Deposition Shared Facility at the Materials Research Center at Northwestern University supported by the National Science Foundation MRSEC program (DMR-1720139) and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205). This work additionally made use of the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS) supported by Northwestern University, The Dow Chemical Company, and DuPont de Nemours, Inc. The APS is a U.S. Department of Energy(DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The authors acknowledge Dr. Timothy Davenport and Dr. Stephen Wilke for help in thermo-chemical hydrogen production measurements, and graduate student Louis Wangfor assistance with Rietveld refinements and for consultation on thermogravimetric measurements. Peer reviewed
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2021License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2020.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 67 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2021License: CC BY NC NDRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2020.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, ItalyPublisher:Elsevier BV Xin Qian; Sossina M. Haile; Emanuela Mastronardo; Emanuela Mastronardo; Juan M. Coronado;handle: 11570/3206277
Abstract Recently, CaMnO3 has been proposed as a promising candidate for high temperature thermochemical heat storage. The material reversibly releases oxygen in response to changes in oxygen partial pressure (pO2) in the temperature range (800-1000°C) suitable for Concentrated Solar Power (CSP) plants. However, it undergoes decomposition at pO2
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102793&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102793&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019 Italy, SpainPublisher:AIP Publishing Funded by:EC | SESPerEC| SESPerJuan M. Coronado; Emanuela Mastronardo; Emanuela Mastronardo; Sossina M. Haile; Xin Qian;doi: 10.1063/1.5117754
handle: 10261/230500 , 11570/3204187
[EN] CaMnO3 oxide can be considered a promising candidate for high temperature thermochemical heat storage, since it is able to release oxygen in a wide temperature range (800-1000 °C) at different oxygen partial pressures (pO2) suitable for Concentrated Solar Power (CSP) plants. Moreover, it is composed of earth abundant, inexpensive, non-toxic elements. However, it undergoes decomposition at pO2<0.01 atm and at temperature above 1100 °C. In order to overcome this limitation and to extent the operating temperature range, in this study B-site doping with Fe was used as approach for preventing decomposition. The reaction enthalpy was measured through equilibrium non-stoichiometry curves so that the heat storage capacity could be evaluated. It was demonstrated that Fe-doping prevented CaMnO3 decomposition up to 1200 °C at pO2=0.008 thus widening the operating temperature range and the oxygen reduction extent. In addition, the heat storage capacity (ΔH (kJ/molABO3)) of Fe-CaMnO3 (∼324 kJ/kgABO3) is remarkably higher than that of the un-doped CaMnO3 (∼250 kJ/kgABO3 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N° 74616. Support of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Award DE-EE0008089.0000, is also acknowledged. Peer reviewed
https://aip.scitatio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1063/1.51...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5117754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 29visibility views 29 download downloads 32 Powered bymore_vert https://aip.scitatio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1063/1.51...Conference object . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5117754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Elsevier BV Haemin Paik; Haemin Paik; Xin Qian; Austin B. Plymill; Strahinja K. Zecevic; Dae-Kwang Lim; Calum R. I. Chisholm; Sossina M. Haile;Summary Production of high-purity hydrogen by thermal-electrochemical decomposition of ammonia at an intermediate temperature of 250°C is demonstrated. The process is enabled by use of a solid-acid-based electrochemical cell (SAEC) in combination with a bilayered anode, comprising a thermal-cracking catalyst layer and a hydrogen electrooxidation catalyst layer. Cs-promoted Ru on carbon nanotubes (Ru/CNT) serves as the thermal decomposition catalyst, and Pt on carbon black mixed with CsH2PO4 is used to catalyze hydrogen electrooxidation. Cells were operated at 250°C with humidified dilute ammonia supplied to the anode and humidified hydrogen supplied to the counter electrode. A current density of 435 mA/cm2 was achieved at a potential of 0.4 V and ammonia flow rate of 30 sccm. With a demonstrated faradic efficiency for hydrogen production of 100%, the process yields hydrogen at a rate of 1.48 m o l H 2 / g c a t h .
Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://doi.org/10.1016/j.joule.2020.10.006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://doi.org/10.1016/j.joule.2020.10.006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, SpainPublisher:Royal Society of Chemistry (RSC) Funded by:NSF | NNCI: Soft and Hybrid Nan..., NSF | MRSEC: Center for Multifu...NSF| NNCI: Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource ,NSF| MRSEC: Center for Multifunctional MaterialsAuthors: Emanuela Mastronardo; Xin Qian; Juan M. Coronado; Sossina M. Haile;doi: 10.1039/d2ta07779e
handle: 10261/357687 , 11570/3256496
By co-doping CaMnO3 with La and Fe (LaxCa1−xMn1−yFeyO3), it is possible to tailor the material thermodynamics, reduction extent, together with operating temperature range for thermochemical heat storage application.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCJournal of Materials Chemistry AArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ta07779e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 28 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca- Università degli Studi di MessinaArticle . 2023License: CC BY NCJournal of Materials Chemistry AArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ta07779e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Spain, ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SESPerEC| SESPerJuan M. Coronado; Emanuela Mastronardo; Emanuela Mastronardo; Xin Qian; Sossina M. Haile;doi: 10.1039/d0ta02031a
handle: 10261/229435 , 11570/3204167
The CaFe0.1Mn0.9O3−δ0 oxide can reversibly release oxygen over a relatively wide range of temperatures and oxygen partial pressures and its favourable thermodynamic properties make it a promising candidate for thermochemical heat storage.
Archivio Istituziona... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Materials Chemistry AArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta02031a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 58 Powered bymore_vert Archivio Istituziona... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Materials Chemistry AArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta02031a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jiahui Lou; Zhenyu Tian; Yunyun Wu; Xiao Li; Xin Qian; Sossina M. Haile; Yong Hao;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu