Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://aip.scitatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aip.scitation.org/doi/...
Conference object
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1063/1.5117...
Conference object . 2019 . Peer-reviewed
Data sources: Crossref
Digital.CSIC
Article . 2019 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fe-doped CaMnO3 for thermochemical heat storage application

Authors: Juan M. Coronado; Emanuela Mastronardo; Emanuela Mastronardo; Sossina M. Haile; Xin Qian;

Fe-doped CaMnO3 for thermochemical heat storage application

Abstract

[EN] CaMnO3 oxide can be considered a promising candidate for high temperature thermochemical heat storage, since it is able to release oxygen in a wide temperature range (800-1000 °C) at different oxygen partial pressures (pO2) suitable for Concentrated Solar Power (CSP) plants. Moreover, it is composed of earth abundant, inexpensive, non-toxic elements. However, it undergoes decomposition at pO2<0.01 atm and at temperature above 1100 °C. In order to overcome this limitation and to extent the operating temperature range, in this study B-site doping with Fe was used as approach for preventing decomposition. The reaction enthalpy was measured through equilibrium non-stoichiometry curves so that the heat storage capacity could be evaluated. It was demonstrated that Fe-doping prevented CaMnO3 decomposition up to 1200 °C at pO2=0.008 thus widening the operating temperature range and the oxygen reduction extent. In addition, the heat storage capacity (ΔH (kJ/molABO3)) of Fe-CaMnO3 (∼324 kJ/kgABO3) is remarkably higher than that of the un-doped CaMnO3 (∼250 kJ/kgABO3 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N° 74616. Support of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Award DE-EE0008089.0000, is also acknowledged. Peer reviewed

Countries
Italy, Spain
Keywords

Thermodynamic functions, Doping, CaMnO3 oxide, Concentrated solar power, Stoichiometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 29
    download downloads 32
  • 29
    views
    32
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC2932
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
11
Top 10%
Average
Top 10%
29
32
Green
bronze