- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:EC | SPATIODIVERSITYEC| SPATIODIVERSITYYuval R. Zelnik; Stephan Getzin; Thorsten Wiegand; Ehud Meron; Itzhak Katra; Hezi Yizhaq; Omer Tzuk; Kerstin Wiegand; Bronwyn Bell; Todd E. Erickson; Todd E. Erickson; Anthony C. Postle;SignificancePattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology.
Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:EC | SPATIODIVERSITYEC| SPATIODIVERSITYYuval R. Zelnik; Stephan Getzin; Thorsten Wiegand; Ehud Meron; Itzhak Katra; Hezi Yizhaq; Omer Tzuk; Kerstin Wiegand; Bronwyn Bell; Todd E. Erickson; Todd E. Erickson; Anthony C. Postle;SignificancePattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology.
Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Belgium, SpainPublisher:Springer Science and Business Media LLC José M. Grünzweig; Hans J. De Boeck; Ana Rey; Maria J. Santos; Ori Adam; Michael Bahn; Jayne Belnap; Gaby Deckmyn; Stefan C. Dekker; Omar Flores; Daniel Gliksman; David Helman; Kevin R. Hultine; Lingli Liu; Ehud Meron; Yaron Michael; Efrat Sheffer; Heather L. Throop; Omer Tzuk; Dan Yakir;Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Belgium, SpainPublisher:Springer Science and Business Media LLC José M. Grünzweig; Hans J. De Boeck; Ana Rey; Maria J. Santos; Ori Adam; Michael Bahn; Jayne Belnap; Gaby Deckmyn; Stefan C. Dekker; Omar Flores; Daniel Gliksman; David Helman; Kevin R. Hultine; Lingli Liu; Ehud Meron; Yaron Michael; Efrat Sheffer; Heather L. Throop; Omer Tzuk; Dan Yakir;Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:EC | SPATIODIVERSITYEC| SPATIODIVERSITYYuval R. Zelnik; Stephan Getzin; Thorsten Wiegand; Ehud Meron; Itzhak Katra; Hezi Yizhaq; Omer Tzuk; Kerstin Wiegand; Bronwyn Bell; Todd E. Erickson; Todd E. Erickson; Anthony C. Postle;SignificancePattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology.
Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:EC | SPATIODIVERSITYEC| SPATIODIVERSITYYuval R. Zelnik; Stephan Getzin; Thorsten Wiegand; Ehud Meron; Itzhak Katra; Hezi Yizhaq; Omer Tzuk; Kerstin Wiegand; Bronwyn Bell; Todd E. Erickson; Todd E. Erickson; Anthony C. Postle;SignificancePattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology.
Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522130113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Belgium, SpainPublisher:Springer Science and Business Media LLC José M. Grünzweig; Hans J. De Boeck; Ana Rey; Maria J. Santos; Ori Adam; Michael Bahn; Jayne Belnap; Gaby Deckmyn; Stefan C. Dekker; Omar Flores; Daniel Gliksman; David Helman; Kevin R. Hultine; Lingli Liu; Ehud Meron; Yaron Michael; Efrat Sheffer; Heather L. Throop; Omer Tzuk; Dan Yakir;Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Belgium, SpainPublisher:Springer Science and Business Media LLC José M. Grünzweig; Hans J. De Boeck; Ana Rey; Maria J. Santos; Ori Adam; Michael Bahn; Jayne Belnap; Gaby Deckmyn; Stefan C. Dekker; Omar Flores; Daniel Gliksman; David Helman; Kevin R. Hultine; Lingli Liu; Ehud Meron; Yaron Michael; Efrat Sheffer; Heather L. Throop; Omer Tzuk; Dan Yakir;Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu