
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Discovery of fairy circles in Australia supports self-organization theory

Discovery of fairy circles in Australia supports self-organization theory
SignificancePattern-formation theory predicts that vegetation gap patterns, such as the fairy circles of Namibia, emerge through the action of pattern-forming biomass–water feedbacks and that such patterns should be found elsewhere in water-limited systems around the world. We report here the exciting discovery of fairy-circle patterns in the remote outback of Australia. Using fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and pattern-formation theory we show that the Australian gap patterns share with their Namibian counterparts the same characteristics but are driven by a different biomass–water feedback. These observations are in line with a central universality principle of pattern-formation theory and support the applicability of this theory to wider contexts of spatial self-organization in ecology.
Feedback, Physiological, Rain, Plant Development, Western Australia, Poaceae, Grassland, Models, Biological, Namibia, Biomass
Feedback, Physiological, Rain, Plant Development, Western Australia, Poaceae, Grassland, Models, Biological, Namibia, Biomass
2 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).164 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
