- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri; Hussain J. Hussain;doi: 10.3390/en14020445
Cool roofs use reflective materials or coatings to reflect a portion of the incident solar radiation. This results in a lowering the surface temperature of the cool roof compared to black roofs, and thus helps reduce the cooling energy loads during the summer season. The research reported in this paper was conducted to assess experimentally and numerically the performance of cool and black roofs that were subjected to the hot, humid and dusty climate of Jubail Industrial City (JIC). This paper focused on characterizing one of the important properties of reflective coating material (RCM), which is its solar reflectivity. In this study, the effect of dust/dirt accumulation on the solar reflectivity of the RCM was investigated at different exposure times to the natural weathering conditions of JIC. The test results showed that dust and dirt can significantly contribute in reducing the solar reflectivity of the RCM. As such, a number of cleaning processes were conducted on the surface of the RCM so as to increase its solar reflectivity. The effect of each cleaning process on the solar reflectivity of the RCM was investigated. Finally, this paper provides a test protocol and procedure for characterizing the dust concentration/intensity on the surfaces of the RCM and cleaning this material after different exposure times to a natural and polluted climate.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri; Hussain J. Hussain;doi: 10.3390/en14020445
Cool roofs use reflective materials or coatings to reflect a portion of the incident solar radiation. This results in a lowering the surface temperature of the cool roof compared to black roofs, and thus helps reduce the cooling energy loads during the summer season. The research reported in this paper was conducted to assess experimentally and numerically the performance of cool and black roofs that were subjected to the hot, humid and dusty climate of Jubail Industrial City (JIC). This paper focused on characterizing one of the important properties of reflective coating material (RCM), which is its solar reflectivity. In this study, the effect of dust/dirt accumulation on the solar reflectivity of the RCM was investigated at different exposure times to the natural weathering conditions of JIC. The test results showed that dust and dirt can significantly contribute in reducing the solar reflectivity of the RCM. As such, a number of cleaning processes were conducted on the surface of the RCM so as to increase its solar reflectivity. The effect of each cleaning process on the solar reflectivity of the RCM was investigated. Finally, this paper provides a test protocol and procedure for characterizing the dust concentration/intensity on the surfaces of the RCM and cleaning this material after different exposure times to a natural and polluted climate.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri;doi: 10.3390/su132212522
The heat generation from recent advanced computer chips is increasing rapidly. This creates a challenge in cooling the chips while maintaining their temperatures below the threshold values. Another challenge is that the heat generation in the chip is not uniform where some chip components generate more heat than other components. This would create a large temperature gradient across the chip, resulting in inducing thermal stresses inside the chip that may lead to a high probability to damage the chip. The locations in the chip with heat rates that correspond to high heat fluxes are known as hotspots. This research study focuses on using thermoelectric modules (TEMs) for cooling chip hotspots of different heat fluxes. When a TEM is used for cooling a chip hotspot, it is called a thermoelectric cooler (TEC), which requires electrical power. Additionally, when a TEM is used for converting a chip’s wasted heat to electrical power, it is called a thermoelectric generator (TEG). In this study, the TEMs are used for cooling the hotspots of computer chips, and a TEC is attached to the hotspot to reduce its temperature to an acceptable value. On the other hand, the other cold surfaces of the chip are attached to TEGs for harvesting electrical power from the chip’s wasted heat. Thereafter, this harvested electrical power (HEP) is then used to run the TEC attached to the hotspot. Since no external electrical power is needed for cooling the hotspot to an acceptable temperature, this technique is called a sustainable self-cooling framework (SSCF). In this paper, the operation principles of the SSCF to cool the hotspot, subjected to different operating conditions, are discussed. As well, considerations are given to investigate the effect of the TEM geometrical parameters, such as the P-/N-leg height and spacing between the legs in both operations of the TEC mode and TEG mode on the SSCF performance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri;doi: 10.3390/su132212522
The heat generation from recent advanced computer chips is increasing rapidly. This creates a challenge in cooling the chips while maintaining their temperatures below the threshold values. Another challenge is that the heat generation in the chip is not uniform where some chip components generate more heat than other components. This would create a large temperature gradient across the chip, resulting in inducing thermal stresses inside the chip that may lead to a high probability to damage the chip. The locations in the chip with heat rates that correspond to high heat fluxes are known as hotspots. This research study focuses on using thermoelectric modules (TEMs) for cooling chip hotspots of different heat fluxes. When a TEM is used for cooling a chip hotspot, it is called a thermoelectric cooler (TEC), which requires electrical power. Additionally, when a TEM is used for converting a chip’s wasted heat to electrical power, it is called a thermoelectric generator (TEG). In this study, the TEMs are used for cooling the hotspots of computer chips, and a TEC is attached to the hotspot to reduce its temperature to an acceptable value. On the other hand, the other cold surfaces of the chip are attached to TEGs for harvesting electrical power from the chip’s wasted heat. Thereafter, this harvested electrical power (HEP) is then used to run the TEC attached to the hotspot. Since no external electrical power is needed for cooling the hotspot to an acceptable temperature, this technique is called a sustainable self-cooling framework (SSCF). In this paper, the operation principles of the SSCF to cool the hotspot, subjected to different operating conditions, are discussed. As well, considerations are given to investigate the effect of the TEM geometrical parameters, such as the P-/N-leg height and spacing between the legs in both operations of the TEC mode and TEG mode on the SSCF performance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri; Hussain J. Hussain;doi: 10.3390/en14020445
Cool roofs use reflective materials or coatings to reflect a portion of the incident solar radiation. This results in a lowering the surface temperature of the cool roof compared to black roofs, and thus helps reduce the cooling energy loads during the summer season. The research reported in this paper was conducted to assess experimentally and numerically the performance of cool and black roofs that were subjected to the hot, humid and dusty climate of Jubail Industrial City (JIC). This paper focused on characterizing one of the important properties of reflective coating material (RCM), which is its solar reflectivity. In this study, the effect of dust/dirt accumulation on the solar reflectivity of the RCM was investigated at different exposure times to the natural weathering conditions of JIC. The test results showed that dust and dirt can significantly contribute in reducing the solar reflectivity of the RCM. As such, a number of cleaning processes were conducted on the surface of the RCM so as to increase its solar reflectivity. The effect of each cleaning process on the solar reflectivity of the RCM was investigated. Finally, this paper provides a test protocol and procedure for characterizing the dust concentration/intensity on the surfaces of the RCM and cleaning this material after different exposure times to a natural and polluted climate.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri; Hussain J. Hussain;doi: 10.3390/en14020445
Cool roofs use reflective materials or coatings to reflect a portion of the incident solar radiation. This results in a lowering the surface temperature of the cool roof compared to black roofs, and thus helps reduce the cooling energy loads during the summer season. The research reported in this paper was conducted to assess experimentally and numerically the performance of cool and black roofs that were subjected to the hot, humid and dusty climate of Jubail Industrial City (JIC). This paper focused on characterizing one of the important properties of reflective coating material (RCM), which is its solar reflectivity. In this study, the effect of dust/dirt accumulation on the solar reflectivity of the RCM was investigated at different exposure times to the natural weathering conditions of JIC. The test results showed that dust and dirt can significantly contribute in reducing the solar reflectivity of the RCM. As such, a number of cleaning processes were conducted on the surface of the RCM so as to increase its solar reflectivity. The effect of each cleaning process on the solar reflectivity of the RCM was investigated. Finally, this paper provides a test protocol and procedure for characterizing the dust concentration/intensity on the surfaces of the RCM and cleaning this material after different exposure times to a natural and polluted climate.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/445/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri;doi: 10.3390/su132212522
The heat generation from recent advanced computer chips is increasing rapidly. This creates a challenge in cooling the chips while maintaining their temperatures below the threshold values. Another challenge is that the heat generation in the chip is not uniform where some chip components generate more heat than other components. This would create a large temperature gradient across the chip, resulting in inducing thermal stresses inside the chip that may lead to a high probability to damage the chip. The locations in the chip with heat rates that correspond to high heat fluxes are known as hotspots. This research study focuses on using thermoelectric modules (TEMs) for cooling chip hotspots of different heat fluxes. When a TEM is used for cooling a chip hotspot, it is called a thermoelectric cooler (TEC), which requires electrical power. Additionally, when a TEM is used for converting a chip’s wasted heat to electrical power, it is called a thermoelectric generator (TEG). In this study, the TEMs are used for cooling the hotspots of computer chips, and a TEC is attached to the hotspot to reduce its temperature to an acceptable value. On the other hand, the other cold surfaces of the chip are attached to TEGs for harvesting electrical power from the chip’s wasted heat. Thereafter, this harvested electrical power (HEP) is then used to run the TEC attached to the hotspot. Since no external electrical power is needed for cooling the hotspot to an acceptable temperature, this technique is called a sustainable self-cooling framework (SSCF). In this paper, the operation principles of the SSCF to cool the hotspot, subjected to different operating conditions, are discussed. As well, considerations are given to investigate the effect of the TEM geometrical parameters, such as the P-/N-leg height and spacing between the legs in both operations of the TEC mode and TEG mode on the SSCF performance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Hamed H. Saber; Ali E. Hajiah; Saleh A. Alshehri;doi: 10.3390/su132212522
The heat generation from recent advanced computer chips is increasing rapidly. This creates a challenge in cooling the chips while maintaining their temperatures below the threshold values. Another challenge is that the heat generation in the chip is not uniform where some chip components generate more heat than other components. This would create a large temperature gradient across the chip, resulting in inducing thermal stresses inside the chip that may lead to a high probability to damage the chip. The locations in the chip with heat rates that correspond to high heat fluxes are known as hotspots. This research study focuses on using thermoelectric modules (TEMs) for cooling chip hotspots of different heat fluxes. When a TEM is used for cooling a chip hotspot, it is called a thermoelectric cooler (TEC), which requires electrical power. Additionally, when a TEM is used for converting a chip’s wasted heat to electrical power, it is called a thermoelectric generator (TEG). In this study, the TEMs are used for cooling the hotspots of computer chips, and a TEC is attached to the hotspot to reduce its temperature to an acceptable value. On the other hand, the other cold surfaces of the chip are attached to TEGs for harvesting electrical power from the chip’s wasted heat. Thereafter, this harvested electrical power (HEP) is then used to run the TEC attached to the hotspot. Since no external electrical power is needed for cooling the hotspot to an acceptable temperature, this technique is called a sustainable self-cooling framework (SSCF). In this paper, the operation principles of the SSCF to cool the hotspot, subjected to different operating conditions, are discussed. As well, considerations are given to investigate the effect of the TEM geometrical parameters, such as the P-/N-leg height and spacing between the legs in both operations of the TEC mode and TEG mode on the SSCF performance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu