- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of)Publisher:Elsevier BV Mengmeng Wang; Zibo Xu; Shanta Dutta; Kang Liu; Claudia Labianca; James H. Clark; Julie B. Zimmerman; Daniel C.W. Tsang;Critical metals are key to lithium-ion batteries (LIB), but metal mining has inflicted many socio-environmental harms. Recovering metals from spent LIBs can partially overcome this challenge, but existing recovery and recycling techniques such as pyrometallurgy and hydrometallurgy are either energy intensive or require toxic chemicals. Solvometallurgy, using biodegradable deep eutectic solvents (DESs), has emerged as a greener option, but full life cycle sustainability of DESs remains unclear. Here, using an integrated assessment framework we show that, compared with pyrometallurgy and hydrometallurgy, the weak solubility of metal compounds in hydrogen bond donors (HBDs) and acceptors (HBAs) and their non-recoverability in chemical precipitation routes of the DES approach result in 3.1 times more CO2 eq, ∼5 times more ozone depletion, and 6.5–7.3 times higher costs. Although alternative electrodeposition routes can minimize HBA loss and alleviate chemical impacts, high energy consumption associated with HBDs exacerbates global warming potential. In situ repairing/regeneration of crystalline compounds in cathode materials could offer a more sustainable application for DESs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2023.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2023.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Shilai Hao; Daniel C.W. Tsang; Jianmin Chen; Huihui Chen; Leichang Cao; Leichang Cao; Gang Luo; Shicheng Zhang;Abstract Response surface methodology was used to optimize the xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis. The effects of independent variables on xylose yield were investigated, including reaction temperature (75–175 °C), reaction time (0–7.2 h), solution-to-feed ratio (4–20 mL/g), and phosphoric-acid concentration (0–6.67 wt%). Results indicated that the individual factor H3PO4 concentration and the interacting factors including temperature × time, temperature × H3PO4 concentration, and solution-to-feed ratio × H3PO4 concentration were all significant factors. Long reaction time (>5.4 h) and high phosphoric-acid concentration (>5%) showed little effect. Xylose yield increased with increasing temperature up to 125 °C. Higher phosphoric-acid concentration and larger solution-to-feed ratio also increased xylose yield. The coefficient of determination, corresponding analysis of variance, and parity plot indicated that the fitted model was appropriate for the acid-hydrolysis process. The maximum xylose production of 90.95% could be obtained with the reaction temperature of 106.7 °C, reaction time of 4.57 h, phosphoric-acid concentration 4.49 wt%, and solution-to-feed ratio of 12.51 mL/g.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of)Publisher:Elsevier BV Benyamin Khoshnevisan; Na Duan; Panagiotis Tsapekos; Mukesh Kumar Awasthi; Zhidan Liu; Ali Mohammadi; Irini Angelidaki; Daniel CW. Tsang; Zengqiang Zhang; Junting Pan; Lin Ma; Mortaza Aghbashlo; Meisam Tabatabaei; Hongbin Liu;Abstract An ever increasing demand for animal protein products has posed serious challenges for managing the increasing quantities of livestock manure. The choice of treatment technologies is still a complicated task and considerable debates over this issue still continue. To build a clearer picture of manure treatment framework, this study was conducted to review the most frequently employed manure management technologies from their state of the art, challenges, sustainability, environmental regulations and incentives, and improvement strategies perspectives. The results showed that most treatment technologies have focused on the solid fraction of manure while the liquid fraction still remains a potential environmental threat. Compared to other waste to energy solutions, anaerobic digestion is the most mature technology to upgrade manure's organic matter into renewable energy, however the problems associated with high investment costs, operating parameters, manure collection, and digestate management have hindered its developments in rural areas in developing countries. Bio-oil production through hydrothermal liquification is also a promising solution, as it can directly convert the wet manure into biofuel. However, lipid-poor nature of manure, operational difficulties, and the need for downstream process to remove nitrogenous compounds from the final product necessitate further research. Livestock manure management (both solid and liquid fractions) under biorefinery approach seems an inevitable solution for future sustainable development to meet circular bioeconomy requirements. Much research is still required to establish a systematic framework based on regional requirements to develop an integrated manure nutrient recycling and manure management planning with minimum environmental risks and maximum profit.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United States, China (People's Republic of), China (People's Republic of), China (People's Republic of)Publisher:American Chemical Society (ACS) Daniel C.W. Tsang; Zhengtao Shen; Kevin C.-W. Wu; Season S. Chen; Season S. Chen; Deyi Hou; Shicheng Zhang; Jean-Philippe Tessonnier; Yong Sik Ok; Yang Cao; Yang Cao; Jin Shang;handle: 20.500.12876/13533
Glucose isomerization to fructose is one of the most important reactions in the field of biomass valorization. We demonstrate wood waste valorization with MgCl2 salt to synthesize an environment-fr...
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Babasaheb M. Matsagar; Chang-Yen Hsu; Season S. Chen; Tansir Ahamad; Saad M. Alshehri; Daniel C. W. Tsang; Kevin C.-W. Wu;doi: 10.1039/c9se00681h
We describe the selective hydrogenation of furfural (FAL) into tetrahydrofurfuryl alcohol (THFA) under mild conditions (30 °C) in aqueous media using a Rh-loaded carbon (Rh/C) catalyst in a one-pot fashion.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00681h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00681h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Feng Shen; Xinni Xiong; Junyan Fu; Jirui Yang; Mo Qiu; Xinhua Qi; Daniel C.W. Tsang;Abstract Biomass resources have been considered as one of the most promising renewable feedstocks to replace fossil resources. However, valorization of biomass is still challenging due to concerns about environmental sustainability and low efficiency of conversion processes. Mechanical ball milling technology, which has emerged as an efficient and environmentally sound alternative to traditional method, can overcome this obstacle to facilitate biomass valorization. Mechanical energy in the ball milling process can induce chemical reactions of biomass in solvent-less/-free conditions. This work reviews the latest advances in the mechanochemical conversion of biomass into chemicals and carbon materials. The initial pretreatment of biomass, catalytic transformation process of biomass, and synthesis of biomass-derived carbon materials (ordered mesoporous carbons, hierarchically porous carbons, carbon/metal composites, etc.) are discussed in detail. Mechanisms, development history, key influencing factors, and technology readiness level of ball milling on biomass valorization are also elucidated. Limitations and opportunities associated with this green technology are highlighted for future research directions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Manish Kumar; Yuqing Sun; Rashmi Rathour; Ashok Pandey; Indu Shekhar Thakur; Daniel C.W. Tsang;pmid: 32059310
The current review explores the potential application of algal biomass for the production of biofuels and bio-based products. The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review. Various lipid extraction techniques from algal biomass along with transesterification reactions for biodiesel production are briefly discussed. Processes such as the pretreatment and saccharification of algal biomass, fermentation, gasification, pyrolysis, hydrothermal liquefaction, and anaerobic digestion for the production of biohydrogen, bio-oils, biomethane, biochar (BC), and various bio-based products are reviewed in detail. The biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products. The authors also discuss opportunities and challenges related to bio-valorization of algal biomass and use their own perspective regarding the processes involved in production and the feasibility to make algal research a reality for the production of biofuels and bio-based products in a sustainable manner.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu362 citations 362 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 China (People's Republic of), China (People's Republic of), United Kingdom, China (People's Republic of)Publisher:Elsevier BV Chi-Hwa Wang; Season S. Chen; Eilhann E. Kwon; Siming You; Yong Sik Ok; Yong Sik Ok; Daniel C.W. Tsang; Jechan Lee;pmid: 28705422
This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review.
CORE arrow_drop_down EnlightenArticle . 2017License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/153186/1/153186.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 328 citations 328 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/153186/1/153186.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Eilhann E. Kwon; Dong Wan Cho; Dong Wan Cho; Hocheol Song; Daniel C.W. Tsang; Gihoon Kwon;Abstract This work proposed a new method for one step fabrication of carbon supported (biochar) Co9S8 composite via the thermo-chemical process of cobalt oxide (Co3O4) and lignin under CO2 atmosphere. A series of pyrolysis were conducted in N2 and CO2 environment, and their thermal degradation behaviors were characterized. The thermogravimetric analysis tests revealed that CO2 did not affect physical aspects of the thermal degradation. However, the influence of CO2 on chemical aspects governing the thermal degradation mechanisms was apparent. As an example of it, carbon supported (biochar) Co9S8 composite was only generated in CO2 environment. The surface morphology and structural matrix of biochar generated from CO2 environment was characterized using various spectroscopic instruments, which confirmed the formation of Co9S8. The formation of Co9S8 was highly affected by the pyrolytic parameters such as temperature and duration for isothermal run. Furthermore, use of CO2 as the reaction medium provided an effective way for modifying pore structure of biochar. More importantly, the formation of highly porous structure and Co9S8 in the presence of CO2 imparted strong catalytic capability. The reaction kinetics of p-nitrophenol (PNP) reduction using CO2-700 °C and CO2-760 °C biochar was 9 × 10−3 and 18 × 10−3 s−1, respectively, of which performance was superior to other catalytic materials in the literature. Lastly, the successive PNP reduction tests revealed the invulnerable catalytic capability up to 10 PNP reduction cycles. Thus, all experimental findings in this study suggests that Co9S8 could be synthesize from the waste materials and CO2. Moreover, Co9S8 could be employed as an effective catalyst in the environmental applications.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2018.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2018.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of)Publisher:Elsevier BV Zhicheng Jiang; Mi Gao; Wei Ding; Chenjun Huang; Changwei Hu; Bi Shi; Daniel C.W. Tsang;pmid: 33626472
Chrome-free metal tanning agent has been considered as eco-friendly in the leather industry. However, extensive crosslinking reactions of metal species on the leather surface restrain their uniform penetration into the hierarchical nanoscale leather matrix. Thus, masking agents with appropriate coordination ability are needed. Herein, the selective degradation of hemicellulose in corncob was achieved with 92.5% of conversion in an AlCl3-H2O system, obtaining oligosaccharides masking agent with high purity and leaving cellulose and lignin in the solid residue for other valuable use. Subsequently, H2O2 oxidation was performed to introduce -CHO/-COOH into oligosaccharides and reduce their molecular weights, thereby enhancing coordination ability and reducing ligand dimension. The post-oxidized reaction fluids together with additional Zr species were subjected to leather tanning, in which the oligosaccharides could coordinate with Al/Zr species and promote the penetration of metal species into the leather matrix. By controlling the hemicellulose degradation and oligosaccharide oxidation, an appropriate concentration of oligosaccharides with proper -CHO/-COOH contents allowed the efficient masking effect of the oligosaccharides. As a result, a uniform distribution of Al/Zr species was observed on the cross section, and 83.5 °C of shrinkage temperature was obtained for the chrome-free tanned leather.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.125425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.125425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of)Publisher:Elsevier BV Mengmeng Wang; Zibo Xu; Shanta Dutta; Kang Liu; Claudia Labianca; James H. Clark; Julie B. Zimmerman; Daniel C.W. Tsang;Critical metals are key to lithium-ion batteries (LIB), but metal mining has inflicted many socio-environmental harms. Recovering metals from spent LIBs can partially overcome this challenge, but existing recovery and recycling techniques such as pyrometallurgy and hydrometallurgy are either energy intensive or require toxic chemicals. Solvometallurgy, using biodegradable deep eutectic solvents (DESs), has emerged as a greener option, but full life cycle sustainability of DESs remains unclear. Here, using an integrated assessment framework we show that, compared with pyrometallurgy and hydrometallurgy, the weak solubility of metal compounds in hydrogen bond donors (HBDs) and acceptors (HBAs) and their non-recoverability in chemical precipitation routes of the DES approach result in 3.1 times more CO2 eq, ∼5 times more ozone depletion, and 6.5–7.3 times higher costs. Although alternative electrodeposition routes can minimize HBA loss and alleviate chemical impacts, high energy consumption associated with HBDs exacerbates global warming potential. In situ repairing/regeneration of crystalline compounds in cathode materials could offer a more sustainable application for DESs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2023.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oneear.2023.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Shilai Hao; Daniel C.W. Tsang; Jianmin Chen; Huihui Chen; Leichang Cao; Leichang Cao; Gang Luo; Shicheng Zhang;Abstract Response surface methodology was used to optimize the xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis. The effects of independent variables on xylose yield were investigated, including reaction temperature (75–175 °C), reaction time (0–7.2 h), solution-to-feed ratio (4–20 mL/g), and phosphoric-acid concentration (0–6.67 wt%). Results indicated that the individual factor H3PO4 concentration and the interacting factors including temperature × time, temperature × H3PO4 concentration, and solution-to-feed ratio × H3PO4 concentration were all significant factors. Long reaction time (>5.4 h) and high phosphoric-acid concentration (>5%) showed little effect. Xylose yield increased with increasing temperature up to 125 °C. Higher phosphoric-acid concentration and larger solution-to-feed ratio also increased xylose yield. The coefficient of determination, corresponding analysis of variance, and parity plot indicated that the fitted model was appropriate for the acid-hydrolysis process. The maximum xylose production of 90.95% could be obtained with the reaction temperature of 106.7 °C, reaction time of 4.57 h, phosphoric-acid concentration 4.49 wt%, and solution-to-feed ratio of 12.51 mL/g.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.01.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of)Publisher:Elsevier BV Benyamin Khoshnevisan; Na Duan; Panagiotis Tsapekos; Mukesh Kumar Awasthi; Zhidan Liu; Ali Mohammadi; Irini Angelidaki; Daniel CW. Tsang; Zengqiang Zhang; Junting Pan; Lin Ma; Mortaza Aghbashlo; Meisam Tabatabaei; Hongbin Liu;Abstract An ever increasing demand for animal protein products has posed serious challenges for managing the increasing quantities of livestock manure. The choice of treatment technologies is still a complicated task and considerable debates over this issue still continue. To build a clearer picture of manure treatment framework, this study was conducted to review the most frequently employed manure management technologies from their state of the art, challenges, sustainability, environmental regulations and incentives, and improvement strategies perspectives. The results showed that most treatment technologies have focused on the solid fraction of manure while the liquid fraction still remains a potential environmental threat. Compared to other waste to energy solutions, anaerobic digestion is the most mature technology to upgrade manure's organic matter into renewable energy, however the problems associated with high investment costs, operating parameters, manure collection, and digestate management have hindered its developments in rural areas in developing countries. Bio-oil production through hydrothermal liquification is also a promising solution, as it can directly convert the wet manure into biofuel. However, lipid-poor nature of manure, operational difficulties, and the need for downstream process to remove nitrogenous compounds from the final product necessitate further research. Livestock manure management (both solid and liquid fractions) under biorefinery approach seems an inevitable solution for future sustainable development to meet circular bioeconomy requirements. Much research is still required to establish a systematic framework based on regional requirements to develop an integrated manure nutrient recycling and manure management planning with minimum environmental risks and maximum profit.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United States, China (People's Republic of), China (People's Republic of), China (People's Republic of)Publisher:American Chemical Society (ACS) Daniel C.W. Tsang; Zhengtao Shen; Kevin C.-W. Wu; Season S. Chen; Season S. Chen; Deyi Hou; Shicheng Zhang; Jean-Philippe Tessonnier; Yong Sik Ok; Yang Cao; Yang Cao; Jin Shang;handle: 20.500.12876/13533
Glucose isomerization to fructose is one of the most important reactions in the field of biomass valorization. We demonstrate wood waste valorization with MgCl2 salt to synthesize an environment-fr...
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c00278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Babasaheb M. Matsagar; Chang-Yen Hsu; Season S. Chen; Tansir Ahamad; Saad M. Alshehri; Daniel C. W. Tsang; Kevin C.-W. Wu;doi: 10.1039/c9se00681h
We describe the selective hydrogenation of furfural (FAL) into tetrahydrofurfuryl alcohol (THFA) under mild conditions (30 °C) in aqueous media using a Rh-loaded carbon (Rh/C) catalyst in a one-pot fashion.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00681h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00681h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Feng Shen; Xinni Xiong; Junyan Fu; Jirui Yang; Mo Qiu; Xinhua Qi; Daniel C.W. Tsang;Abstract Biomass resources have been considered as one of the most promising renewable feedstocks to replace fossil resources. However, valorization of biomass is still challenging due to concerns about environmental sustainability and low efficiency of conversion processes. Mechanical ball milling technology, which has emerged as an efficient and environmentally sound alternative to traditional method, can overcome this obstacle to facilitate biomass valorization. Mechanical energy in the ball milling process can induce chemical reactions of biomass in solvent-less/-free conditions. This work reviews the latest advances in the mechanochemical conversion of biomass into chemicals and carbon materials. The initial pretreatment of biomass, catalytic transformation process of biomass, and synthesis of biomass-derived carbon materials (ordered mesoporous carbons, hierarchically porous carbons, carbon/metal composites, etc.) are discussed in detail. Mechanisms, development history, key influencing factors, and technology readiness level of ball milling on biomass valorization are also elucidated. Limitations and opportunities associated with this green technology are highlighted for future research directions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Elsevier BV Manish Kumar; Yuqing Sun; Rashmi Rathour; Ashok Pandey; Indu Shekhar Thakur; Daniel C.W. Tsang;pmid: 32059310
The current review explores the potential application of algal biomass for the production of biofuels and bio-based products. The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review. Various lipid extraction techniques from algal biomass along with transesterification reactions for biodiesel production are briefly discussed. Processes such as the pretreatment and saccharification of algal biomass, fermentation, gasification, pyrolysis, hydrothermal liquefaction, and anaerobic digestion for the production of biohydrogen, bio-oils, biomethane, biochar (BC), and various bio-based products are reviewed in detail. The biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products. The authors also discuss opportunities and challenges related to bio-valorization of algal biomass and use their own perspective regarding the processes involved in production and the feasibility to make algal research a reality for the production of biofuels and bio-based products in a sustainable manner.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu362 citations 362 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.137116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 China (People's Republic of), China (People's Republic of), United Kingdom, China (People's Republic of)Publisher:Elsevier BV Chi-Hwa Wang; Season S. Chen; Eilhann E. Kwon; Siming You; Yong Sik Ok; Yong Sik Ok; Daniel C.W. Tsang; Jechan Lee;pmid: 28705422
This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review.
CORE arrow_drop_down EnlightenArticle . 2017License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/153186/1/153186.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 328 citations 328 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/153186/1/153186.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:Elsevier BV Eilhann E. Kwon; Dong Wan Cho; Dong Wan Cho; Hocheol Song; Daniel C.W. Tsang; Gihoon Kwon;Abstract This work proposed a new method for one step fabrication of carbon supported (biochar) Co9S8 composite via the thermo-chemical process of cobalt oxide (Co3O4) and lignin under CO2 atmosphere. A series of pyrolysis were conducted in N2 and CO2 environment, and their thermal degradation behaviors were characterized. The thermogravimetric analysis tests revealed that CO2 did not affect physical aspects of the thermal degradation. However, the influence of CO2 on chemical aspects governing the thermal degradation mechanisms was apparent. As an example of it, carbon supported (biochar) Co9S8 composite was only generated in CO2 environment. The surface morphology and structural matrix of biochar generated from CO2 environment was characterized using various spectroscopic instruments, which confirmed the formation of Co9S8. The formation of Co9S8 was highly affected by the pyrolytic parameters such as temperature and duration for isothermal run. Furthermore, use of CO2 as the reaction medium provided an effective way for modifying pore structure of biochar. More importantly, the formation of highly porous structure and Co9S8 in the presence of CO2 imparted strong catalytic capability. The reaction kinetics of p-nitrophenol (PNP) reduction using CO2-700 °C and CO2-760 °C biochar was 9 × 10−3 and 18 × 10−3 s−1, respectively, of which performance was superior to other catalytic materials in the literature. Lastly, the successive PNP reduction tests revealed the invulnerable catalytic capability up to 10 PNP reduction cycles. Thus, all experimental findings in this study suggests that Co9S8 could be synthesize from the waste materials and CO2. Moreover, Co9S8 could be employed as an effective catalyst in the environmental applications.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2018.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2018.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of)Publisher:Elsevier BV Zhicheng Jiang; Mi Gao; Wei Ding; Chenjun Huang; Changwei Hu; Bi Shi; Daniel C.W. Tsang;pmid: 33626472
Chrome-free metal tanning agent has been considered as eco-friendly in the leather industry. However, extensive crosslinking reactions of metal species on the leather surface restrain their uniform penetration into the hierarchical nanoscale leather matrix. Thus, masking agents with appropriate coordination ability are needed. Herein, the selective degradation of hemicellulose in corncob was achieved with 92.5% of conversion in an AlCl3-H2O system, obtaining oligosaccharides masking agent with high purity and leaving cellulose and lignin in the solid residue for other valuable use. Subsequently, H2O2 oxidation was performed to introduce -CHO/-COOH into oligosaccharides and reduce their molecular weights, thereby enhancing coordination ability and reducing ligand dimension. The post-oxidized reaction fluids together with additional Zr species were subjected to leather tanning, in which the oligosaccharides could coordinate with Al/Zr species and promote the penetration of metal species into the leather matrix. By controlling the hemicellulose degradation and oligosaccharide oxidation, an appropriate concentration of oligosaccharides with proper -CHO/-COOH contents allowed the efficient masking effect of the oligosaccharides. As a result, a uniform distribution of Al/Zr species was observed on the cross section, and 83.5 °C of shrinkage temperature was obtained for the chrome-free tanned leather.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.125425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.125425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu