- home
- Advanced Search
Filters
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Australia, Italy, Italy, Germany, Switzerland, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Mark A. Liebig; Pete Smith; Robert M. Rees; Russell McAuliffe; Jean-François Soussana; Nina Buchmann; Nuala Fitton; Gianni Bellocchi; Katja Klumpp; Lutz Merbold; Lutz Merbold; Raphaël Martin; Lorenzo Brilli; Cairistiona F. E. Topp; Mark Lieffering; Sylvie Recous; Fiona Ehrhardt; Val Snow; Paul C. D. Newton; Christopher D. Dorich; Peter Grace; Kathrin Fuchs; Kathrin Fuchs; Richard T. Conant; Marco Bindi;AbstractA potential strategy for mitigating nitrous oxide (N2O) emissions from permanent grasslands is the partial substitution of fertilizer nitrogen (Nfert) with symbiotically fixed nitrogen (Nsymb) from legumes. The input of Nsymb reduces the energy costs of producing fertilizer and provides a supply of nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications. Legumes have been promoted as a potential N2O mitigation strategy for grasslands, but evidence to support their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and DayCent), we tested the N2O mitigation potential and productivity of full factorial combinations of legume proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed that replacing fertilizer with legumes reduced N2O emissions without reducing productivity across a broad range of legume‐fertilizer combinations. Although the models were consistent with the relative changes of N2O emissions compared to the baseline scenario (200 kg N ha−1 yr−1; no legumes), they predicted different levels of absolute N2O emissions and thus also of absolute N2O emission reductions; both were greater in DayCent than in APSIM. We recommend confirming these results with experimental studies assessing the effect of clover proportions in the range 30–50% and ≤150 kg N ha−1 yr−1 input as these were identified as best‐bet climate smart agricultural practices.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2020License: CC BY NC NDData sources: Flore (Florence Research Repository)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2020License: CC BY NC NDData sources: Flore (Florence Research Repository)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Jan 2019 Switzerland, France, Italy, Italy, United KingdomPublisher:Elsevier BV Funded by:UKRI | U-Grass: Understanding an..., SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni...UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplands ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grasslandPaul C. D. Newton; Cairistiona F.E. Topp; Andreas Lüscher; Pete Smith; Raphaël Martin; Val Snow; Russel McAuliffe; Nuala Fitton; Lutz Merbold; Lutz Merbold; Robert M. Rees; Kathrin Fuchs; Katja Klumpp; Marco Bindi; Mark Lieffering; Camilla Dibari; Olivier Huguenin-Elie; Rogerio Cichota; Lorenzo Brilli; Lorenzo Brilli;Los pastizales compuestos por mezclas de gramíneas y leguminosas podrían convertirse en un sustituto del fertilizante nitrogenado a través de la fijación biológica de nitrógeno (BNF), que a su vez puede reducir las emisiones de óxido nitroso directamente de los suelos sin impactos negativos en la productividad. Los modelos pueden probar cómo se pueden usar las leguminosas para cumplir con los objetivos ambientales y de producción, pero muchos modelos utilizados para simular las emisiones de gases de efecto invernadero (GEI) de los pastizales tienen una representación deficiente de las mezclas de pasto y leguminosas y el BNF, o una validación deficiente de estas características. Nuestro objetivo es examinar cómo estos sistemas están representados actualmente en dos modelos biogeoquímicos basados en procesos, APSIM y DayCent, en comparación con un conjunto de datos experimentales con diferentes mezclas de gramíneas y leguminosas a tres tasas de fertilizantes de nitrógeno (N). Aquí, proponemos un enfoque novedoso para acoplar DayCent, un modelo de una sola especie a APSIM, un modelo multiespecie, para aumentar la capacidad de DayCent al representar una gama de fracciones de gramíneas y leguminosas. Si bien dependen de supuestos específicos, ambos modelos pueden capturar los aspectos clave del crecimiento de las leguminosas de pasto, incluida la producción de biomasa y BNF, y simular correctamente las interacciones entre las fracciones cambiantes de leguminosas y pasto, particularmente las mezclas con una fracción alta de trébol. Nuestro trabajo sugiere que los modelos de una sola especie no deben usarse para mezclas de gramíneas y leguminosas más allá de aproximadamente el 30% de contenido de leguminosas, a menos que se utilice un enfoque similar al adoptado aquí. Les prairies composées de mélanges herbe-légumine pourraient devenir un substitut à l'engrais azoté grâce à la fixation biologique de l'azote (BNF) qui, à son tour, peut réduire les émissions d'oxyde nitreux directement des sols sans impact négatif sur la productivité. Les modèles peuvent tester comment les légumineuses peuvent être utilisées pour atteindre les objectifs environnementaux et de production, mais de nombreux modèles utilisés pour simuler les émissions de gaz à effet de serre (GES) des prairies ont soit une mauvaise représentation des mélanges herbe-légumine et BNF, soit une mauvaise validation de ces caractéristiques. Notre objectif est d'examiner comment ces systèmes sont actuellement représentés dans deux modèles biogéochimiques basés sur les processus, APSIM et DayCent, par rapport à un ensemble de données expérimentales avec différents mélanges herbe-légumine à trois taux d'engrais azotés (N). Ici, nous proposons une nouvelle approche pour coupler DayCent, un modèle d'espèce unique à APSIM, un modèle multi-espèces, afin d'augmenter la capacité de DayCent lorsqu'il représente une gamme de fractions herbe-légumine. Bien qu'ils dépendent d'hypothèses spécifiques, les deux modèles peuvent capturer les aspects clés de la croissance des légumineuses à graminées, y compris la production de biomasse et le BNF, et simuler correctement les interactions entre les fractions changeantes des légumineuses et des graminées, en particulier les mélanges avec une fraction élevée de trèfle. Nos travaux suggèrent que les modèles à espèce unique ne devraient pas être utilisés pour les mélanges herbe-légumine au-delà d'environ 30% de teneur en légumineuses, à moins d'utiliser une approche similaire à celle adoptée ici. Grasslands comprised of grass-legume mixtures could become a substitute for nitrogen fertiliser through biological nitrogen fixation (BNF) which in turn can reduce nitrous oxide emissions directly from soils without negative impacts on productivity. Models can test how legumes can be used to meet environmental and production goals, but many models used to simulate greenhouse gas (GHG) emissions from grasslands have either a poor representation of grass-legume mixtures and BNF, or poor validation of these features. Our objective is to examine how such systems are currently represented in two process-based biogeochemical models, APSIM and DayCent, when compared against an experimental dataset with different grass-legume mixtures at three nitrogen (N) fertiliser rates. Here, we propose a novel approach for coupling DayCent, a single species model to APSIM, a multi-species model, to increase the capability of DayCent when representing a range of grass-legume fractions. While dependent on specific assumptions, both models can capture the key aspects of the grass-legume growth, including biomass production and BNF and to correctly simulate the interactions between changing legume and grass fractions, particularly mixtures with a high clover fraction. Our work suggests that single species models should not be used for grass-legume mixtures beyond about 30% legume content, unless using a similar approach to that adopted here. يمكن أن تصبح الأراضي العشبية المكونة من مخاليط البقوليات العشبية بديلاً عن الأسمدة النيتروجينية من خلال التثبيت البيولوجي للنيتروجين (BNF) والذي بدوره يمكن أن يقلل من انبعاثات أكسيد النيتروز مباشرة من التربة دون تأثيرات سلبية على الإنتاجية. يمكن للنماذج اختبار كيفية استخدام البقوليات لتحقيق الأهداف البيئية والإنتاجية، ولكن العديد من النماذج المستخدمة لمحاكاة انبعاثات غازات الدفيئة (GHG) من الأراضي العشبية إما لديها تمثيل ضعيف لخليط البقوليات العشبية و BNF، أو التحقق الضعيف من هذه الميزات. هدفنا هو دراسة كيفية تمثيل هذه الأنظمة حاليًا في نموذجين كيميائيين بيولوجيين قائمين على العمليات، APSIM و DayCent، عند مقارنتهما بمجموعة بيانات تجريبية بمخاليط مختلفة من البقوليات العشبية بثلاثة معدلات أسمدة نيتروجينية (N). هنا، نقترح نهجًا جديدًا لإقران DayCent، وهو نموذج نوع واحد بـ APSIM، وهو نموذج متعدد الأنواع، لزيادة قدرة DayCent عند تمثيل مجموعة من كسور البقوليات العشبية. مع الاعتماد على افتراضات محددة، يمكن لكلا النموذجين التقاط الجوانب الرئيسية لنمو البقوليات العشبية، بما في ذلك إنتاج الكتلة الحيوية و BNF ومحاكاة التفاعلات بين تغيير البقوليات وكسور العشب بشكل صحيح، وخاصة الخلائط ذات الكسر البرمجي العالي. يقترح عملنا أنه لا ينبغي استخدام نماذج الأنواع الفردية لمخاليط البقوليات العشبية التي تتجاوز حوالي 30 ٪ من محتوى البقوليات، ما لم تستخدم نهجًا مشابهًا للنهج المعتمد هنا.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Full-Text: https://hal.science/hal-02166488Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101118Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12163Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2019.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Full-Text: https://hal.science/hal-02166488Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101118Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12163Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2019.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, France, France, United Kingdom, France, France, Italy, Australia, France, France, Switzerland, Germany, AustraliaPublisher:Wiley Funded by:EC | FACCE CSA, SNSF | Robust models for assessi...EC| FACCE CSA ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Renáta Sándor; Paul C. D. Newton; Ward Smith; Nuala Fitton; Brian Grant; Jean-François Soussana; Joël Léonard; Katja Klumpp; Lutz Merbold; Lutz Merbold; Stephanie K. Jones; Raia Silvia Massad; Luca Doro; Andrew D. Moore; Elizabeth A. Meier; Fiona Ehrhardt; Vasileios Myrgiotis; Russel McAuliffe; Bruno Basso; Sandro José Giacomini; Sylvie Recous; Matthew T. Harrison; Peter Grace; Massimiliano De Antoni Migliorati; Gianni Bellocchi; Patricia Laville; Raphaël Martin; Val Snow; Miko U. F. Kirschbaum; Arti Bhatia; Pete Smith; Lianhai Wu; Qing Zhang; Mark Lieffering; Joanna Sharp; Elizabeth Pattey; Lorenzo Brilli; Mark A. Liebig; Christopher D. Dorich; Jordi Doltra; Susanne Rolinski;AbstractSimulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Australia, Australia, Hungary, Spain, HungaryPublisher:American Chemical Society (ACS) Funded by:UKRI | Dynamic monitoring, repor...UKRI| Dynamic monitoring, reporting and verification for implementing negative emission strategies in managed ecosystems (RETINA)Fabrizio Albanito; David McBey; Matthew Tom Harrison; Pete Smith; Fiona Ehrhardt; Arti Bhatia; Gianni Bellocchi; Lorenzo Brilli; Marco Carozzi; KM Christie; Jordi Doltra; Chris Dorich; Luca Doro; Peter Grace; Brian Grant; Joël Léonard; Mark A. Liebig; Cameron I. Ludemann; Raphaël Martin; Elizabeth A. Meier; Rachelle Meyer; Massimiliano De Antoni Migliorati; Vasileios Myrgiotis; Sylvie Recous; Renata Sándor; Val Snow; Jean‐François Soussana; Ward Smith; Nuala Fitton;On se rend de plus en plus compte que la complexité des études d'ensembles de modèles dépend non seulement des modèles utilisés, mais aussi de l'expérience et de l'approche utilisées par les modélisateurs pour calibrer et valider les résultats, qui restent une source d'incertitude. Ici, nous avons appliqué une méthode de prise de décision multicritères pour étudier la justification appliquée par les modélisateurs dans une étude d'ensemble de modèles où 12 types de modèles biogéochimiques différents basés sur des processus ont été comparés à travers cinq étapes d'étalonnage successives. Les modélisateurs partageaient un niveau d'accord commun sur l'importance des variables utilisées pour initialiser leurs modèles pour l'étalonnage. Cependant, nous avons constaté une incohérence entre les modélisateurs lors de l'évaluation de l'importance des variables d'entrée à travers différentes étapes d'étalonnage. Le niveau de pondération subjective attribué par les modélisateurs aux données d'étalonnage a diminué séquentiellement à mesure que l'étendue et le nombre de variables fournies augmentaient. Dans ce contexte, l'importance perçue attribuée à des variables telles que le taux de fertilisation, le régime d'irrigation, la texture du sol, le pH et les niveaux initiaux des stocks de carbone organique et d'azote du sol était statistiquement différente lorsqu'elle était classée selon les types de modèles. L'importance attribuée aux variables d'entrée telles que la durée expérimentale, la production primaire brute et l'échange net d'écosystèmes variait considérablement en fonction de la durée de l'expérience du modélisateur. Nous soutenons que l'accès progressif aux données d'entrée à travers les cinq étapes d'étalonnage a influencé négativement la cohérence des interprétations faites par les modélisateurs, avec un biais cognitif dans les routines d'étalonnage « essais et erreurs ». Notre étude souligne qu'il est essentiel de négliger les attributs humains et sociaux dans les résultats des études de modélisation et de comparaison des modèles. Bien que la complexité des processus capturés dans les algorithmes et le paramétrage du modèle soit importante, nous soutenons que (1) les hypothèses du modélisateur sur la mesure dans laquelle les paramètres doivent être modifiés et (2) les perceptions du modélisateur de l'importance des paramètres du modèle sont tout aussi essentielles pour obtenir un étalonnage du modèle de qualité que les détails numériques ou analytiques. Existe una creciente conciencia de que la complejidad de los estudios de conjuntos de modelos depende no solo de los modelos utilizados, sino también de la experiencia y el enfoque utilizados por los modeladores para calibrar y validar los resultados, que siguen siendo una fuente de incertidumbre. Aquí, aplicamos un método de toma de decisiones multicriterio para investigar la justificación aplicada por los modeladores en un estudio de conjunto de modelos donde se compararon 12 tipos de modelos biogeoquímicos diferentes basados en procesos en cinco etapas de calibración sucesivas. Los modeladores compartieron un nivel común de acuerdo sobre la importancia de las variables utilizadas para inicializar sus modelos para la calibración. Sin embargo, encontramos inconsistencia entre los modeladores al juzgar la importancia de las variables de entrada en diferentes etapas de calibración. El nivel de ponderación subjetiva atribuido por los modeladores a los datos de calibración disminuyó secuencialmente a medida que aumentaba el alcance y el número de variables proporcionadas. En este contexto, la importancia percibida atribuida a variables como la tasa de fertilización, el régimen de riego, la textura del suelo, el pH y los niveles iniciales de las reservas orgánicas de carbono y nitrógeno del suelo fue estadísticamente diferente cuando se clasificaron según los tipos de modelos. La importancia atribuida a variables de entrada como la duración experimental, la producción primaria bruta y el intercambio neto de ecosistemas varió significativamente según la duración de la experiencia del modelador. Argumentamos que el acceso gradual a los datos de entrada en las cinco etapas de calibración influyó negativamente en la consistencia de las interpretaciones realizadas por los modeladores, con sesgo cognitivo en las rutinas de calibración de "ensayo y error". Nuestro estudio destaca que pasar por alto los atributos humanos y sociales es fundamental en los resultados del modelado y los estudios de intercomparación de modelos. Si bien la complejidad de los procesos capturados en los algoritmos y la parametrización del modelo es importante, sostenemos que (1) las suposiciones del modelador sobre la medida en que se deben alterar los parámetros y (2) las percepciones del modelador sobre la importancia de los parámetros del modelo son tan críticas para obtener una calibración del modelo de calidad como los detalles numéricos o analíticos. There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler's experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in "trial-and-error" calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler's assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details. هناك إدراك متزايد بأن تعقيد دراسات مجموعة النماذج لا يعتمد فقط على النماذج المستخدمة ولكن أيضًا على الخبرة والنهج اللذين يستخدمهما المصممون لمعايرة النتائج والتحقق من صحتها، والتي لا تزال مصدرًا لعدم اليقين. هنا، طبقنا طريقة صنع قرار متعددة المعايير للتحقيق في الأساس المنطقي الذي طبقه مصممو النماذج في دراسة جماعية نموذجية حيث تمت مقارنة 12 نوعًا مختلفًا من النماذج البيوكيميائية القائمة على العمليات عبر خمس مراحل معايرة متتالية. شارك مصممو النماذج مستوى مشتركًا من الاتفاق حول أهمية المتغيرات المستخدمة لتهيئة نماذجهم للمعايرة. ومع ذلك، وجدنا عدم اتساق بين صانعي النماذج عند الحكم على أهمية متغيرات المدخلات عبر مراحل المعايرة المختلفة. انخفض مستوى الترجيح الذاتي الذي يعزوه صانعو النماذج إلى بيانات المعايرة بالتتابع مع زيادة مدى وعدد المتغيرات المقدمة. في هذا السياق، كانت الأهمية المتصورة المنسوبة إلى متغيرات مثل معدل التسميد ونظام الري وقوام التربة ودرجة الحموضة والمستويات الأولية لمخزونات الكربون العضوي والنيتروجين في التربة مختلفة إحصائيًا عند تصنيفها وفقًا لأنواع النماذج. اختلفت الأهمية المنسوبة إلى متغيرات المدخلات مثل المدة التجريبية، والإنتاج الأولي الإجمالي، وصافي تبادل النظام الإيكولوجي اختلافًا كبيرًا وفقًا لطول تجربة صانع النموذج. نحن نجادل بأن الوصول التدريجي إلى بيانات الإدخال عبر مراحل المعايرة الخمس أثر سلبًا على اتساق التفسيرات التي قدمها صانعو النماذج، مع التحيز المعرفي في إجراءات معايرة "التجربة والخطأ". تسلط دراستنا الضوء على أن التغاضي عن السمات البشرية والاجتماعية أمر بالغ الأهمية في نتائج النمذجة ودراسات المقارنة بين النماذج. في حين أن تعقيد العمليات التي تم التقاطها في خوارزميات النموذج ووضع المعلمات أمر مهم، فإننا نؤكد أن (1) افتراضات صانع النموذج حول مدى ضرورة تغيير المعلمات و (2) تصورات صانع النموذج لأهمية معلمات النموذج لا تقل أهمية في الحصول على معايرة نموذج الجودة عن التفاصيل العددية أو التحليلية.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEVal Snow; Lutz Merbold; Lutz Merbold; Robert M. Rees; Paul C. D. Newton; Katja Klumpp; Nina Buchmann; Raphaël Martin; Pete Smith; Kathrin Fuchs; Daniel Bretscher; Nuala Fitton; Lorenzo Brilli; Lorenzo Brilli; Cairistiona F.E. Topp; Mark Lieffering; Susanne Rolinski;handle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Australia, Italy, Italy, Germany, Switzerland, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Mark A. Liebig; Pete Smith; Robert M. Rees; Russell McAuliffe; Jean-François Soussana; Nina Buchmann; Nuala Fitton; Gianni Bellocchi; Katja Klumpp; Lutz Merbold; Lutz Merbold; Raphaël Martin; Lorenzo Brilli; Cairistiona F. E. Topp; Mark Lieffering; Sylvie Recous; Fiona Ehrhardt; Val Snow; Paul C. D. Newton; Christopher D. Dorich; Peter Grace; Kathrin Fuchs; Kathrin Fuchs; Richard T. Conant; Marco Bindi;AbstractA potential strategy for mitigating nitrous oxide (N2O) emissions from permanent grasslands is the partial substitution of fertilizer nitrogen (Nfert) with symbiotically fixed nitrogen (Nsymb) from legumes. The input of Nsymb reduces the energy costs of producing fertilizer and provides a supply of nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications. Legumes have been promoted as a potential N2O mitigation strategy for grasslands, but evidence to support their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and DayCent), we tested the N2O mitigation potential and productivity of full factorial combinations of legume proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed that replacing fertilizer with legumes reduced N2O emissions without reducing productivity across a broad range of legume‐fertilizer combinations. Although the models were consistent with the relative changes of N2O emissions compared to the baseline scenario (200 kg N ha−1 yr−1; no legumes), they predicted different levels of absolute N2O emissions and thus also of absolute N2O emission reductions; both were greater in DayCent than in APSIM. We recommend confirming these results with experimental studies assessing the effect of clover proportions in the range 30–50% and ≤150 kg N ha−1 yr−1 input as these were identified as best‐bet climate smart agricultural practices.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2020License: CC BY NC NDData sources: Flore (Florence Research Repository)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2020License: CC BY NC NDData sources: Flore (Florence Research Repository)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Jan 2019 Switzerland, France, Italy, Italy, United KingdomPublisher:Elsevier BV Funded by:UKRI | U-Grass: Understanding an..., SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni...UKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplands ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grasslandPaul C. D. Newton; Cairistiona F.E. Topp; Andreas Lüscher; Pete Smith; Raphaël Martin; Val Snow; Russel McAuliffe; Nuala Fitton; Lutz Merbold; Lutz Merbold; Robert M. Rees; Kathrin Fuchs; Katja Klumpp; Marco Bindi; Mark Lieffering; Camilla Dibari; Olivier Huguenin-Elie; Rogerio Cichota; Lorenzo Brilli; Lorenzo Brilli;Los pastizales compuestos por mezclas de gramíneas y leguminosas podrían convertirse en un sustituto del fertilizante nitrogenado a través de la fijación biológica de nitrógeno (BNF), que a su vez puede reducir las emisiones de óxido nitroso directamente de los suelos sin impactos negativos en la productividad. Los modelos pueden probar cómo se pueden usar las leguminosas para cumplir con los objetivos ambientales y de producción, pero muchos modelos utilizados para simular las emisiones de gases de efecto invernadero (GEI) de los pastizales tienen una representación deficiente de las mezclas de pasto y leguminosas y el BNF, o una validación deficiente de estas características. Nuestro objetivo es examinar cómo estos sistemas están representados actualmente en dos modelos biogeoquímicos basados en procesos, APSIM y DayCent, en comparación con un conjunto de datos experimentales con diferentes mezclas de gramíneas y leguminosas a tres tasas de fertilizantes de nitrógeno (N). Aquí, proponemos un enfoque novedoso para acoplar DayCent, un modelo de una sola especie a APSIM, un modelo multiespecie, para aumentar la capacidad de DayCent al representar una gama de fracciones de gramíneas y leguminosas. Si bien dependen de supuestos específicos, ambos modelos pueden capturar los aspectos clave del crecimiento de las leguminosas de pasto, incluida la producción de biomasa y BNF, y simular correctamente las interacciones entre las fracciones cambiantes de leguminosas y pasto, particularmente las mezclas con una fracción alta de trébol. Nuestro trabajo sugiere que los modelos de una sola especie no deben usarse para mezclas de gramíneas y leguminosas más allá de aproximadamente el 30% de contenido de leguminosas, a menos que se utilice un enfoque similar al adoptado aquí. Les prairies composées de mélanges herbe-légumine pourraient devenir un substitut à l'engrais azoté grâce à la fixation biologique de l'azote (BNF) qui, à son tour, peut réduire les émissions d'oxyde nitreux directement des sols sans impact négatif sur la productivité. Les modèles peuvent tester comment les légumineuses peuvent être utilisées pour atteindre les objectifs environnementaux et de production, mais de nombreux modèles utilisés pour simuler les émissions de gaz à effet de serre (GES) des prairies ont soit une mauvaise représentation des mélanges herbe-légumine et BNF, soit une mauvaise validation de ces caractéristiques. Notre objectif est d'examiner comment ces systèmes sont actuellement représentés dans deux modèles biogéochimiques basés sur les processus, APSIM et DayCent, par rapport à un ensemble de données expérimentales avec différents mélanges herbe-légumine à trois taux d'engrais azotés (N). Ici, nous proposons une nouvelle approche pour coupler DayCent, un modèle d'espèce unique à APSIM, un modèle multi-espèces, afin d'augmenter la capacité de DayCent lorsqu'il représente une gamme de fractions herbe-légumine. Bien qu'ils dépendent d'hypothèses spécifiques, les deux modèles peuvent capturer les aspects clés de la croissance des légumineuses à graminées, y compris la production de biomasse et le BNF, et simuler correctement les interactions entre les fractions changeantes des légumineuses et des graminées, en particulier les mélanges avec une fraction élevée de trèfle. Nos travaux suggèrent que les modèles à espèce unique ne devraient pas être utilisés pour les mélanges herbe-légumine au-delà d'environ 30% de teneur en légumineuses, à moins d'utiliser une approche similaire à celle adoptée ici. Grasslands comprised of grass-legume mixtures could become a substitute for nitrogen fertiliser through biological nitrogen fixation (BNF) which in turn can reduce nitrous oxide emissions directly from soils without negative impacts on productivity. Models can test how legumes can be used to meet environmental and production goals, but many models used to simulate greenhouse gas (GHG) emissions from grasslands have either a poor representation of grass-legume mixtures and BNF, or poor validation of these features. Our objective is to examine how such systems are currently represented in two process-based biogeochemical models, APSIM and DayCent, when compared against an experimental dataset with different grass-legume mixtures at three nitrogen (N) fertiliser rates. Here, we propose a novel approach for coupling DayCent, a single species model to APSIM, a multi-species model, to increase the capability of DayCent when representing a range of grass-legume fractions. While dependent on specific assumptions, both models can capture the key aspects of the grass-legume growth, including biomass production and BNF and to correctly simulate the interactions between changing legume and grass fractions, particularly mixtures with a high clover fraction. Our work suggests that single species models should not be used for grass-legume mixtures beyond about 30% legume content, unless using a similar approach to that adopted here. يمكن أن تصبح الأراضي العشبية المكونة من مخاليط البقوليات العشبية بديلاً عن الأسمدة النيتروجينية من خلال التثبيت البيولوجي للنيتروجين (BNF) والذي بدوره يمكن أن يقلل من انبعاثات أكسيد النيتروز مباشرة من التربة دون تأثيرات سلبية على الإنتاجية. يمكن للنماذج اختبار كيفية استخدام البقوليات لتحقيق الأهداف البيئية والإنتاجية، ولكن العديد من النماذج المستخدمة لمحاكاة انبعاثات غازات الدفيئة (GHG) من الأراضي العشبية إما لديها تمثيل ضعيف لخليط البقوليات العشبية و BNF، أو التحقق الضعيف من هذه الميزات. هدفنا هو دراسة كيفية تمثيل هذه الأنظمة حاليًا في نموذجين كيميائيين بيولوجيين قائمين على العمليات، APSIM و DayCent، عند مقارنتهما بمجموعة بيانات تجريبية بمخاليط مختلفة من البقوليات العشبية بثلاثة معدلات أسمدة نيتروجينية (N). هنا، نقترح نهجًا جديدًا لإقران DayCent، وهو نموذج نوع واحد بـ APSIM، وهو نموذج متعدد الأنواع، لزيادة قدرة DayCent عند تمثيل مجموعة من كسور البقوليات العشبية. مع الاعتماد على افتراضات محددة، يمكن لكلا النموذجين التقاط الجوانب الرئيسية لنمو البقوليات العشبية، بما في ذلك إنتاج الكتلة الحيوية و BNF ومحاكاة التفاعلات بين تغيير البقوليات وكسور العشب بشكل صحيح، وخاصة الخلائط ذات الكسر البرمجي العالي. يقترح عملنا أنه لا ينبغي استخدام نماذج الأنواع الفردية لمخاليط البقوليات العشبية التي تتجاوز حوالي 30 ٪ من محتوى البقوليات، ما لم تستخدم نهجًا مشابهًا للنهج المعتمد هنا.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Full-Text: https://hal.science/hal-02166488Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101118Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12163Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2019.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Full-Text: https://hal.science/hal-02166488Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101118Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12163Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2019.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, France, France, United Kingdom, France, France, Italy, Australia, France, France, Switzerland, Germany, AustraliaPublisher:Wiley Funded by:EC | FACCE CSA, SNSF | Robust models for assessi...EC| FACCE CSA ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Renáta Sándor; Paul C. D. Newton; Ward Smith; Nuala Fitton; Brian Grant; Jean-François Soussana; Joël Léonard; Katja Klumpp; Lutz Merbold; Lutz Merbold; Stephanie K. Jones; Raia Silvia Massad; Luca Doro; Andrew D. Moore; Elizabeth A. Meier; Fiona Ehrhardt; Vasileios Myrgiotis; Russel McAuliffe; Bruno Basso; Sandro José Giacomini; Sylvie Recous; Matthew T. Harrison; Peter Grace; Massimiliano De Antoni Migliorati; Gianni Bellocchi; Patricia Laville; Raphaël Martin; Val Snow; Miko U. F. Kirschbaum; Arti Bhatia; Pete Smith; Lianhai Wu; Qing Zhang; Mark Lieffering; Joanna Sharp; Elizabeth Pattey; Lorenzo Brilli; Mark A. Liebig; Christopher D. Dorich; Jordi Doltra; Susanne Rolinski;AbstractSimulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Australia, Australia, Hungary, Spain, HungaryPublisher:American Chemical Society (ACS) Funded by:UKRI | Dynamic monitoring, repor...UKRI| Dynamic monitoring, reporting and verification for implementing negative emission strategies in managed ecosystems (RETINA)Fabrizio Albanito; David McBey; Matthew Tom Harrison; Pete Smith; Fiona Ehrhardt; Arti Bhatia; Gianni Bellocchi; Lorenzo Brilli; Marco Carozzi; KM Christie; Jordi Doltra; Chris Dorich; Luca Doro; Peter Grace; Brian Grant; Joël Léonard; Mark A. Liebig; Cameron I. Ludemann; Raphaël Martin; Elizabeth A. Meier; Rachelle Meyer; Massimiliano De Antoni Migliorati; Vasileios Myrgiotis; Sylvie Recous; Renata Sándor; Val Snow; Jean‐François Soussana; Ward Smith; Nuala Fitton;On se rend de plus en plus compte que la complexité des études d'ensembles de modèles dépend non seulement des modèles utilisés, mais aussi de l'expérience et de l'approche utilisées par les modélisateurs pour calibrer et valider les résultats, qui restent une source d'incertitude. Ici, nous avons appliqué une méthode de prise de décision multicritères pour étudier la justification appliquée par les modélisateurs dans une étude d'ensemble de modèles où 12 types de modèles biogéochimiques différents basés sur des processus ont été comparés à travers cinq étapes d'étalonnage successives. Les modélisateurs partageaient un niveau d'accord commun sur l'importance des variables utilisées pour initialiser leurs modèles pour l'étalonnage. Cependant, nous avons constaté une incohérence entre les modélisateurs lors de l'évaluation de l'importance des variables d'entrée à travers différentes étapes d'étalonnage. Le niveau de pondération subjective attribué par les modélisateurs aux données d'étalonnage a diminué séquentiellement à mesure que l'étendue et le nombre de variables fournies augmentaient. Dans ce contexte, l'importance perçue attribuée à des variables telles que le taux de fertilisation, le régime d'irrigation, la texture du sol, le pH et les niveaux initiaux des stocks de carbone organique et d'azote du sol était statistiquement différente lorsqu'elle était classée selon les types de modèles. L'importance attribuée aux variables d'entrée telles que la durée expérimentale, la production primaire brute et l'échange net d'écosystèmes variait considérablement en fonction de la durée de l'expérience du modélisateur. Nous soutenons que l'accès progressif aux données d'entrée à travers les cinq étapes d'étalonnage a influencé négativement la cohérence des interprétations faites par les modélisateurs, avec un biais cognitif dans les routines d'étalonnage « essais et erreurs ». Notre étude souligne qu'il est essentiel de négliger les attributs humains et sociaux dans les résultats des études de modélisation et de comparaison des modèles. Bien que la complexité des processus capturés dans les algorithmes et le paramétrage du modèle soit importante, nous soutenons que (1) les hypothèses du modélisateur sur la mesure dans laquelle les paramètres doivent être modifiés et (2) les perceptions du modélisateur de l'importance des paramètres du modèle sont tout aussi essentielles pour obtenir un étalonnage du modèle de qualité que les détails numériques ou analytiques. Existe una creciente conciencia de que la complejidad de los estudios de conjuntos de modelos depende no solo de los modelos utilizados, sino también de la experiencia y el enfoque utilizados por los modeladores para calibrar y validar los resultados, que siguen siendo una fuente de incertidumbre. Aquí, aplicamos un método de toma de decisiones multicriterio para investigar la justificación aplicada por los modeladores en un estudio de conjunto de modelos donde se compararon 12 tipos de modelos biogeoquímicos diferentes basados en procesos en cinco etapas de calibración sucesivas. Los modeladores compartieron un nivel común de acuerdo sobre la importancia de las variables utilizadas para inicializar sus modelos para la calibración. Sin embargo, encontramos inconsistencia entre los modeladores al juzgar la importancia de las variables de entrada en diferentes etapas de calibración. El nivel de ponderación subjetiva atribuido por los modeladores a los datos de calibración disminuyó secuencialmente a medida que aumentaba el alcance y el número de variables proporcionadas. En este contexto, la importancia percibida atribuida a variables como la tasa de fertilización, el régimen de riego, la textura del suelo, el pH y los niveles iniciales de las reservas orgánicas de carbono y nitrógeno del suelo fue estadísticamente diferente cuando se clasificaron según los tipos de modelos. La importancia atribuida a variables de entrada como la duración experimental, la producción primaria bruta y el intercambio neto de ecosistemas varió significativamente según la duración de la experiencia del modelador. Argumentamos que el acceso gradual a los datos de entrada en las cinco etapas de calibración influyó negativamente en la consistencia de las interpretaciones realizadas por los modeladores, con sesgo cognitivo en las rutinas de calibración de "ensayo y error". Nuestro estudio destaca que pasar por alto los atributos humanos y sociales es fundamental en los resultados del modelado y los estudios de intercomparación de modelos. Si bien la complejidad de los procesos capturados en los algoritmos y la parametrización del modelo es importante, sostenemos que (1) las suposiciones del modelador sobre la medida en que se deben alterar los parámetros y (2) las percepciones del modelador sobre la importancia de los parámetros del modelo son tan críticas para obtener una calibración del modelo de calidad como los detalles numéricos o analíticos. There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler's experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in "trial-and-error" calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler's assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details. هناك إدراك متزايد بأن تعقيد دراسات مجموعة النماذج لا يعتمد فقط على النماذج المستخدمة ولكن أيضًا على الخبرة والنهج اللذين يستخدمهما المصممون لمعايرة النتائج والتحقق من صحتها، والتي لا تزال مصدرًا لعدم اليقين. هنا، طبقنا طريقة صنع قرار متعددة المعايير للتحقيق في الأساس المنطقي الذي طبقه مصممو النماذج في دراسة جماعية نموذجية حيث تمت مقارنة 12 نوعًا مختلفًا من النماذج البيوكيميائية القائمة على العمليات عبر خمس مراحل معايرة متتالية. شارك مصممو النماذج مستوى مشتركًا من الاتفاق حول أهمية المتغيرات المستخدمة لتهيئة نماذجهم للمعايرة. ومع ذلك، وجدنا عدم اتساق بين صانعي النماذج عند الحكم على أهمية متغيرات المدخلات عبر مراحل المعايرة المختلفة. انخفض مستوى الترجيح الذاتي الذي يعزوه صانعو النماذج إلى بيانات المعايرة بالتتابع مع زيادة مدى وعدد المتغيرات المقدمة. في هذا السياق، كانت الأهمية المتصورة المنسوبة إلى متغيرات مثل معدل التسميد ونظام الري وقوام التربة ودرجة الحموضة والمستويات الأولية لمخزونات الكربون العضوي والنيتروجين في التربة مختلفة إحصائيًا عند تصنيفها وفقًا لأنواع النماذج. اختلفت الأهمية المنسوبة إلى متغيرات المدخلات مثل المدة التجريبية، والإنتاج الأولي الإجمالي، وصافي تبادل النظام الإيكولوجي اختلافًا كبيرًا وفقًا لطول تجربة صانع النموذج. نحن نجادل بأن الوصول التدريجي إلى بيانات الإدخال عبر مراحل المعايرة الخمس أثر سلبًا على اتساق التفسيرات التي قدمها صانعو النماذج، مع التحيز المعرفي في إجراءات معايرة "التجربة والخطأ". تسلط دراستنا الضوء على أن التغاضي عن السمات البشرية والاجتماعية أمر بالغ الأهمية في نتائج النمذجة ودراسات المقارنة بين النماذج. في حين أن تعقيد العمليات التي تم التقاطها في خوارزميات النموذج ووضع المعلمات أمر مهم، فإننا نؤكد أن (1) افتراضات صانع النموذج حول مدى ضرورة تغيير المعلمات و (2) تصورات صانع النموذج لأهمية معلمات النموذج لا تقل أهمية في الحصول على معايرة نموذج الجودة عن التفاصيل العددية أو التحليلية.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEVal Snow; Lutz Merbold; Lutz Merbold; Robert M. Rees; Paul C. D. Newton; Katja Klumpp; Nina Buchmann; Raphaël Martin; Pete Smith; Kathrin Fuchs; Daniel Bretscher; Nuala Fitton; Lorenzo Brilli; Lorenzo Brilli; Cairistiona F.E. Topp; Mark Lieffering; Susanne Rolinski;handle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu