- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 MalaysiaPublisher:MDPI AG Muhammad Waseem Mumtaz; Ahmad Adnan; Farooq Anwar; Hamid Mukhtar; Muhammad Asam Raza; Farooq Ahmad; Umer Rashid;doi: 10.3390/en5093307
The current study describes the emphatic use of response surface methodology for the optimized biodiesel production using chemical and enzymatic transesterification of rice bran and sunflower oils. Optimal biodiesel yields were determined to be 65.3 ± 2.0%, 73.4 ± 3.5%, 96.5 ± 1.6%, 89.3 ± 2.0% and 41.7 ± 3.9% for rice bran oil and 65.6 ± 1.2%, 82.1 ± 1.7%, 92.5 ± 2.8%, 72.6 ± 1.6% and 50.4 ± 2.5% for sunflower oil via the transesterification catalyzed by NaOH, KOH and NaOCH3,NOVOZYME-435 and A.n. Lipase, respectively. Based upon analysis of variance (ANOVA) and Response Surface plots significant impact of reaction parameters under study was ascertained. FTIR spectroscopic and HPLC methods were employed for monitoring the transesterification reaction progress while GC-MS analysis was performed to evaluate the compositional analysis of biodiesel. The fuel properties of both the rice bran and sunflower oil based biodiesel were shown to be technically compatible with the ASTM D6751 and EN 14214 standards. The monitoring of exhaust emission of synthesized biodiesels and their blends revealed a marked reduction in carbon monoxide (CO) and particulate matter (PM) levels, whereas an irregular trend was observed for NOx emissions.
Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/9/3307/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/9/3307/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Anam Shahzadi; Muhammad Mumtaz; Hamid Mukhtar; Sadia Akram; Tooba Touqeer; Vasudeo Zambare; Lew Christopher;doi: 10.3390/pr9112012
Biodiesel is a promising renewable energy source that can be used together with other biofuels to help meet the growing energy needs of the rapidly increasing global population in an environmentally friendly way. In search for new and more efficient biodiesel production methods, this work reports on the synthesis and use of a novel biocatalyst that can function in a broader range of pH and temperature conditions, while producing high biodiesel yields from vegetable oils. Biodiesel was synthesized by transesterification of non-edible Eruca sativa oil using a lipase from Aspergillus niger that was immobilized on cerium oxide bismuth oxide nanoparticles. The synthesized nanoparticles were first grafted with polydopamine which facilitated the subsequent anchoring of the enzyme on the nanoparticle support. The enzyme activity, pH and temperature stability, and reusability of the immobilized lipase were superior to those of the free enzyme. Following response surface methodology optimization, the highest biodiesel yield of 90.6% was attained using 5 wt% biocatalyst, methanol to oil ratio of 6:1, reaction temperature of 40 °C, pH of 7, and reaction time of 60 h. The produced biodiesel was characterized by Fourier transform infrared spectroscopy and its fatty acid methyl ester composition was determined by gas chromatography-mass spectrometry. Erucic acid methyl ester was identified as the major component in biodiesel, with 47.7 wt% of the total fatty acid methyl esters content. The novel nanobiocatalyst (Bi2O3·CeO2@PDA@A.niger.Lipase) has the potential to produce high biodiesel yields from a variety of vegetable oils.
Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2012/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2012/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 MalaysiaPublisher:MDPI AG Authors: Zain Ul Aabideen; Muhammad Waseem Mumtaz; Muhammad Tayyab Akhtar; Hamid Mukhtar; +3 AuthorsZain Ul Aabideen; Muhammad Waseem Mumtaz; Muhammad Tayyab Akhtar; Hamid Mukhtar; Syed Ali Raza; Tooba Touqeer; Nazamid Saari;The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25214935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25214935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Hadiqa Javaid; Ali Nawaz; Naveeda Riaz; Hamid Mukhtar; Ikram -Ul-Haq; Kanita Ahmed Shah; Hooria Khan; Syeda Michelle Naqvi; Sheeba Shakoor; Aamir Rasool; Kaleem Ullah; Robina Manzoor; Imdad Kaleem; Ghulam Murtaza;Synthetic pollutants are a looming threat to the entire ecosystem, including wildlife, the environment, and human health. Polyhydroxyalkanoates (PHAs) are natural biodegradable microbial polymers with a promising potential to replace synthetic plastics. This research is focused on devising a sustainable approach to produce PHAs by a new microbial strain using untreated synthetic plastics and lignocellulosic biomass. For experiments, 47 soil samples and 18 effluent samples were collected from various areas of Punjab, Pakistan. The samples were primarily screened for PHA detection on agar medium containing Nile blue A stain. The PHA positive bacterial isolates showed prominent orange–yellow fluorescence on irradiation with UV light. They were further screened for PHA estimation by submerged fermentation in the culture broth. Bacterial isolate 16a produced maximum PHA and was identified by 16S rRNA sequencing. It was identified as Stenotrophomonas maltophilia HA-16 (MN240936), reported first time for PHA production. Basic fermentation parameters, such as incubation time, temperature, and pH were optimized for PHA production. Wood chips, cardboard cutouts, plastic bottle cutouts, shredded polystyrene cups, and plastic bags were optimized as alternative sustainable carbon sources for the production of PHAs. A vital finding of this study was the yield obtained by using plastic bags, i.e., 68.24 ± 0.27%. The effective use of plastic and lignocellulosic waste in the cultivation medium for the microbial production of PHA by a novel bacterial strain is discussed in the current study.
Molecules arrow_drop_down MoleculesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1420-3049/25/23/5539/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25235539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1420-3049/25/23/5539/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25235539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Ikram Haq; Kinza Qaisar; Ali Nawaz; Fatima Akram; Hamid Mukhtar; Xin Zohu; Yong Xu; Muhammad Mumtaz; Umer Rashid; Wan Ghani; Thomas Choong;The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11030309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11030309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Fatima Shafiq; Muhammad Waseem Mumtaz; Hamid Mukhtar; Tooba Touqeer; Syed Ali Raza; Umer Rashid; Imededdine Arbi Nehdi; Thomas Shean Yaw Choong;Biodiesel is gaining acceptance as an alternative fuel in a scenario where fossil fuel reserves are being depleted rapidly. Therefore, it is considered as the fuel of the future due to its sustainability, renewable nature and environment friendly attributes. The optimal yield of biodiesel from cheap feed stock oils is a challenge to add cost effectiveness without compromising the fuel quality. In the current experiment, waste chicken fat oil was taken as the feedstock oil to produce biodiesel through the chemical and enzymatic route of transesterification. The process of chemical transesterification was performed using KOH and sodium methoxide, while enzymatic transesterification was done by using free Aspergillus terreus lipase and Aspergillus terreus lipase immobilized on functionalized Fe3O4 nanoparticles (Fe3O4_PDA_Lipase) as biocatalysts. The physico-chemical properties of the understudy feedstock oil were analyzed to check the feasibility as a feedstock for the biodiesel synthesis. The feedstock oil was found suitable for biodiesel production based upon quality assessment. Optimization of various reaction parameters (the temperature and time of reaction, catalyst concentration and methanol-to-oil mole ratio) was performed based on the response surface methodology (RSM). The maximum yield of biodiesel (90.6%) was obtained from waste chicken fat oil by using Fe3O4_PDA_Lipase as an immobilized nano-biocatalyst. Moreover, the above said optimum yield was obtained when transesterification was done using 6% Fe3O4_PDA_Lipase with a methanol-to-oil ratio of 6:1 at 42 °C for 36 h. Biodiesel production was monitored by FTIR spectroscopic analysis, whereas compositional profiling was done by GC–MS. The measured fuel properties—cloud point, pour point, flash point, fire point and kinematic viscosity—met the biodiesel specifications by American Society for Testing and Materials (ASTM).
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/633/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/633/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Universidad Autonoma Metropolitana I.U. Haq; Fatima Akram; Hamid Mukhtar; Yesra Arshad; Ali Nawaz; M. Sameer; Syed Fahad Tahir;In this study, complete purification, characterization, and immobilization of polygalacturonase (pectinase) from Penicillium notatum were carried out to achieve an economical and suitable alternative for industrial fruit juice clarification. Biosynthesis of polygalacturonase was carried out under pre-optimized conditions employing solid-state fermentation at a pilot scale using wheat bran. The enzyme was subjected to a series of steps for purification including ion-exchange chromatography. After that, the purified enzyme was characterized and its kinetics and thermodynamic parameters along with the effect of immobilization on its performance were studied. Finally, a purified acidic enzyme was tested for its clarifying abilities on fresh apple juice. Purification fold of 2.98 was attained with increased specific activity of 256U/mg. Purified polygalacturonase showed a molecular weight of 38 kDa, optimum temperature of 50°C, optimum pH of 5, 50% stability at 50°C, and 84% stability at pH 5. The “Vmax” and “Km” of the enzyme were evaluated to be 250U/mg and 0.11mg/mL, respectively for hydrolyzing pectin. From the Arrhenius plot, activation energy (Ea), enthalpy of activation (ΔH), and entropy of activation (ΔS) were found to be 6.35 KJ/mol, 3.67 KJ/mol, and -1.1KJ/mol, respectively. Among metal ions, most of the tested Organic solvents and inhibitors inhibited the activity. Nano emulsion-based pectinase exhibited better stability. The enzyme was found to be an effective agent for the clarification of fresh apple juice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio2355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio2355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Sadia Akram; Ghulam Nabi; Tooba Touqeer; Jawayria Najeeb; Muhammad Waseem Mumtaz; Anam Zulfiqar; Ahmad Irfan; Ahmad Irfan; Hamid Mukhtar;Abstract Current study was designed for developing the novel nano-biocatalyst (Lipase-PDA-TiO2 NPs) for enzymatic transesterification of Jatropha curcas seed oil (JCSO). The TiO2 NPs were prepared by the hydrothermal method and were afterward modified by the polydopamine (PDA) polymer. The synthesized nanomaterial was characterized by SEM, FTIR, XRD and energy dispersive X-ray spectroscopy. Lipase activity assay was used to check the stability of immobilized enzyme under varying conditions of pH and temperature. Transesterification of JCSO using Lipase-PDA-TiO2 NPs catalyst was optimized by response surface methodology (RSM). Optimum biodiesel yield (92%) was achieved by carrying out the transesterification process for 30 h at 37 °C temperature with 10% nano-biocatalyst concentration, 6:1 methanol:oil ratio and 0.5% water content. On the basis of model significance, R2 value, lack of fit test and predicted vs. actual values, quadratic model was selected as the best fitted model. The FTIR technique was utilized to monitor the transesterification process. The comparison of the physiochemical characteristics of the synthesized biodiesel with the international standard for bio-fuel affirms that the transesterification of JCSO in the presence of the nano-biocatalyst provides an effective alternative for the production of biodiesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 MalaysiaPublisher:Wiley Authors: M. Mumtaz; Hamid Mukhtar; Farooq Anwar; Nazamid Saari;pmid: 25162053
pmc: PMC4138735
Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be47.6±1.5, 92.7±2.5, and95.4±2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were94.2±3.1and62.8±2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from −2.1 to −68.7% and −6.2 to −58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/526105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/526105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Universidad Autonoma Metropolitana Asim Ur Rehman; Ali Nawaz; I.U. Haq; Arifa Tahir; Hamid Mukhtar; Z. Mustafa;doi: 10.24275/rmiq/bio966
Snowballing levels of greenhouse gas emissions and concerns about climate change has led to an ongoing exploration of biofuels. Bioethanol can be obtained from wheat straw and can be readily available as clean fuel for combustion engines. Therefore, Wickerhamomyces anomalus yeast strain IHZ-26 was used to produce bioethanol from sugar solution obtained from enzymatic hydrolysis of wheat straw. Nineteen different fermentation media were used for this purpose in which carbon source employed was sugar solution obtained from enzymatic hydrolysis of wheat straw. Out of which, maximum bioethanol yield (1.09 g/L; p <0.05) was observed in ‘C1 Yeast extract, peptone, glucose’ medium. After optimization of different cultural parameters, surface culture fermentation for 5 days at 25℃ gave maximum results using 2, 1.5 and 2 g of glucose, xylose and ammonium dihydrogen phosphate, respectively. Four hours old inoculum of yeast in a concentration of 3.5% was optimized for maximum bioethanol yield. These optimized parameters resulted in augmented bioethanol production (5.0g/L) by 5.02 folds. This study revelas that W. anomalus IHZ-26 employed was able to covert pentose and hexose sugars simultaneously with efficient ethanol yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 MalaysiaPublisher:MDPI AG Muhammad Waseem Mumtaz; Ahmad Adnan; Farooq Anwar; Hamid Mukhtar; Muhammad Asam Raza; Farooq Ahmad; Umer Rashid;doi: 10.3390/en5093307
The current study describes the emphatic use of response surface methodology for the optimized biodiesel production using chemical and enzymatic transesterification of rice bran and sunflower oils. Optimal biodiesel yields were determined to be 65.3 ± 2.0%, 73.4 ± 3.5%, 96.5 ± 1.6%, 89.3 ± 2.0% and 41.7 ± 3.9% for rice bran oil and 65.6 ± 1.2%, 82.1 ± 1.7%, 92.5 ± 2.8%, 72.6 ± 1.6% and 50.4 ± 2.5% for sunflower oil via the transesterification catalyzed by NaOH, KOH and NaOCH3,NOVOZYME-435 and A.n. Lipase, respectively. Based upon analysis of variance (ANOVA) and Response Surface plots significant impact of reaction parameters under study was ascertained. FTIR spectroscopic and HPLC methods were employed for monitoring the transesterification reaction progress while GC-MS analysis was performed to evaluate the compositional analysis of biodiesel. The fuel properties of both the rice bran and sunflower oil based biodiesel were shown to be technically compatible with the ASTM D6751 and EN 14214 standards. The monitoring of exhaust emission of synthesized biodiesels and their blends revealed a marked reduction in carbon monoxide (CO) and particulate matter (PM) levels, whereas an irregular trend was observed for NOx emissions.
Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/9/3307/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1996-1073/5/9/3307/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en5093307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Anam Shahzadi; Muhammad Mumtaz; Hamid Mukhtar; Sadia Akram; Tooba Touqeer; Vasudeo Zambare; Lew Christopher;doi: 10.3390/pr9112012
Biodiesel is a promising renewable energy source that can be used together with other biofuels to help meet the growing energy needs of the rapidly increasing global population in an environmentally friendly way. In search for new and more efficient biodiesel production methods, this work reports on the synthesis and use of a novel biocatalyst that can function in a broader range of pH and temperature conditions, while producing high biodiesel yields from vegetable oils. Biodiesel was synthesized by transesterification of non-edible Eruca sativa oil using a lipase from Aspergillus niger that was immobilized on cerium oxide bismuth oxide nanoparticles. The synthesized nanoparticles were first grafted with polydopamine which facilitated the subsequent anchoring of the enzyme on the nanoparticle support. The enzyme activity, pH and temperature stability, and reusability of the immobilized lipase were superior to those of the free enzyme. Following response surface methodology optimization, the highest biodiesel yield of 90.6% was attained using 5 wt% biocatalyst, methanol to oil ratio of 6:1, reaction temperature of 40 °C, pH of 7, and reaction time of 60 h. The produced biodiesel was characterized by Fourier transform infrared spectroscopy and its fatty acid methyl ester composition was determined by gas chromatography-mass spectrometry. Erucic acid methyl ester was identified as the major component in biodiesel, with 47.7 wt% of the total fatty acid methyl esters content. The novel nanobiocatalyst (Bi2O3·CeO2@PDA@A.niger.Lipase) has the potential to produce high biodiesel yields from a variety of vegetable oils.
Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2012/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2012/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 MalaysiaPublisher:MDPI AG Authors: Zain Ul Aabideen; Muhammad Waseem Mumtaz; Muhammad Tayyab Akhtar; Hamid Mukhtar; +3 AuthorsZain Ul Aabideen; Muhammad Waseem Mumtaz; Muhammad Tayyab Akhtar; Hamid Mukhtar; Syed Ali Raza; Tooba Touqeer; Nazamid Saari;The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25214935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25214935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Hadiqa Javaid; Ali Nawaz; Naveeda Riaz; Hamid Mukhtar; Ikram -Ul-Haq; Kanita Ahmed Shah; Hooria Khan; Syeda Michelle Naqvi; Sheeba Shakoor; Aamir Rasool; Kaleem Ullah; Robina Manzoor; Imdad Kaleem; Ghulam Murtaza;Synthetic pollutants are a looming threat to the entire ecosystem, including wildlife, the environment, and human health. Polyhydroxyalkanoates (PHAs) are natural biodegradable microbial polymers with a promising potential to replace synthetic plastics. This research is focused on devising a sustainable approach to produce PHAs by a new microbial strain using untreated synthetic plastics and lignocellulosic biomass. For experiments, 47 soil samples and 18 effluent samples were collected from various areas of Punjab, Pakistan. The samples were primarily screened for PHA detection on agar medium containing Nile blue A stain. The PHA positive bacterial isolates showed prominent orange–yellow fluorescence on irradiation with UV light. They were further screened for PHA estimation by submerged fermentation in the culture broth. Bacterial isolate 16a produced maximum PHA and was identified by 16S rRNA sequencing. It was identified as Stenotrophomonas maltophilia HA-16 (MN240936), reported first time for PHA production. Basic fermentation parameters, such as incubation time, temperature, and pH were optimized for PHA production. Wood chips, cardboard cutouts, plastic bottle cutouts, shredded polystyrene cups, and plastic bags were optimized as alternative sustainable carbon sources for the production of PHAs. A vital finding of this study was the yield obtained by using plastic bags, i.e., 68.24 ± 0.27%. The effective use of plastic and lignocellulosic waste in the cultivation medium for the microbial production of PHA by a novel bacterial strain is discussed in the current study.
Molecules arrow_drop_down MoleculesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1420-3049/25/23/5539/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25235539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1420-3049/25/23/5539/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules25235539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Ikram Haq; Kinza Qaisar; Ali Nawaz; Fatima Akram; Hamid Mukhtar; Xin Zohu; Yong Xu; Muhammad Mumtaz; Umer Rashid; Wan Ghani; Thomas Choong;The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11030309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11030309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Fatima Shafiq; Muhammad Waseem Mumtaz; Hamid Mukhtar; Tooba Touqeer; Syed Ali Raza; Umer Rashid; Imededdine Arbi Nehdi; Thomas Shean Yaw Choong;Biodiesel is gaining acceptance as an alternative fuel in a scenario where fossil fuel reserves are being depleted rapidly. Therefore, it is considered as the fuel of the future due to its sustainability, renewable nature and environment friendly attributes. The optimal yield of biodiesel from cheap feed stock oils is a challenge to add cost effectiveness without compromising the fuel quality. In the current experiment, waste chicken fat oil was taken as the feedstock oil to produce biodiesel through the chemical and enzymatic route of transesterification. The process of chemical transesterification was performed using KOH and sodium methoxide, while enzymatic transesterification was done by using free Aspergillus terreus lipase and Aspergillus terreus lipase immobilized on functionalized Fe3O4 nanoparticles (Fe3O4_PDA_Lipase) as biocatalysts. The physico-chemical properties of the understudy feedstock oil were analyzed to check the feasibility as a feedstock for the biodiesel synthesis. The feedstock oil was found suitable for biodiesel production based upon quality assessment. Optimization of various reaction parameters (the temperature and time of reaction, catalyst concentration and methanol-to-oil mole ratio) was performed based on the response surface methodology (RSM). The maximum yield of biodiesel (90.6%) was obtained from waste chicken fat oil by using Fe3O4_PDA_Lipase as an immobilized nano-biocatalyst. Moreover, the above said optimum yield was obtained when transesterification was done using 6% Fe3O4_PDA_Lipase with a methanol-to-oil ratio of 6:1 at 42 °C for 36 h. Biodiesel production was monitored by FTIR spectroscopic analysis, whereas compositional profiling was done by GC–MS. The measured fuel properties—cloud point, pour point, flash point, fire point and kinematic viscosity—met the biodiesel specifications by American Society for Testing and Materials (ASTM).
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/633/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/633/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Universidad Autonoma Metropolitana I.U. Haq; Fatima Akram; Hamid Mukhtar; Yesra Arshad; Ali Nawaz; M. Sameer; Syed Fahad Tahir;In this study, complete purification, characterization, and immobilization of polygalacturonase (pectinase) from Penicillium notatum were carried out to achieve an economical and suitable alternative for industrial fruit juice clarification. Biosynthesis of polygalacturonase was carried out under pre-optimized conditions employing solid-state fermentation at a pilot scale using wheat bran. The enzyme was subjected to a series of steps for purification including ion-exchange chromatography. After that, the purified enzyme was characterized and its kinetics and thermodynamic parameters along with the effect of immobilization on its performance were studied. Finally, a purified acidic enzyme was tested for its clarifying abilities on fresh apple juice. Purification fold of 2.98 was attained with increased specific activity of 256U/mg. Purified polygalacturonase showed a molecular weight of 38 kDa, optimum temperature of 50°C, optimum pH of 5, 50% stability at 50°C, and 84% stability at pH 5. The “Vmax” and “Km” of the enzyme were evaluated to be 250U/mg and 0.11mg/mL, respectively for hydrolyzing pectin. From the Arrhenius plot, activation energy (Ea), enthalpy of activation (ΔH), and entropy of activation (ΔS) were found to be 6.35 KJ/mol, 3.67 KJ/mol, and -1.1KJ/mol, respectively. Among metal ions, most of the tested Organic solvents and inhibitors inhibited the activity. Nano emulsion-based pectinase exhibited better stability. The enzyme was found to be an effective agent for the clarification of fresh apple juice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio2355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio2355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Sadia Akram; Ghulam Nabi; Tooba Touqeer; Jawayria Najeeb; Muhammad Waseem Mumtaz; Anam Zulfiqar; Ahmad Irfan; Ahmad Irfan; Hamid Mukhtar;Abstract Current study was designed for developing the novel nano-biocatalyst (Lipase-PDA-TiO2 NPs) for enzymatic transesterification of Jatropha curcas seed oil (JCSO). The TiO2 NPs were prepared by the hydrothermal method and were afterward modified by the polydopamine (PDA) polymer. The synthesized nanomaterial was characterized by SEM, FTIR, XRD and energy dispersive X-ray spectroscopy. Lipase activity assay was used to check the stability of immobilized enzyme under varying conditions of pH and temperature. Transesterification of JCSO using Lipase-PDA-TiO2 NPs catalyst was optimized by response surface methodology (RSM). Optimum biodiesel yield (92%) was achieved by carrying out the transesterification process for 30 h at 37 °C temperature with 10% nano-biocatalyst concentration, 6:1 methanol:oil ratio and 0.5% water content. On the basis of model significance, R2 value, lack of fit test and predicted vs. actual values, quadratic model was selected as the best fitted model. The FTIR technique was utilized to monitor the transesterification process. The comparison of the physiochemical characteristics of the synthesized biodiesel with the international standard for bio-fuel affirms that the transesterification of JCSO in the presence of the nano-biocatalyst provides an effective alternative for the production of biodiesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 MalaysiaPublisher:Wiley Authors: M. Mumtaz; Hamid Mukhtar; Farooq Anwar; Nazamid Saari;pmid: 25162053
pmc: PMC4138735
Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be47.6±1.5, 92.7±2.5, and95.4±2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were94.2±3.1and62.8±2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from −2.1 to −68.7% and −6.2 to −58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/526105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/526105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Universidad Autonoma Metropolitana Asim Ur Rehman; Ali Nawaz; I.U. Haq; Arifa Tahir; Hamid Mukhtar; Z. Mustafa;doi: 10.24275/rmiq/bio966
Snowballing levels of greenhouse gas emissions and concerns about climate change has led to an ongoing exploration of biofuels. Bioethanol can be obtained from wheat straw and can be readily available as clean fuel for combustion engines. Therefore, Wickerhamomyces anomalus yeast strain IHZ-26 was used to produce bioethanol from sugar solution obtained from enzymatic hydrolysis of wheat straw. Nineteen different fermentation media were used for this purpose in which carbon source employed was sugar solution obtained from enzymatic hydrolysis of wheat straw. Out of which, maximum bioethanol yield (1.09 g/L; p <0.05) was observed in ‘C1 Yeast extract, peptone, glucose’ medium. After optimization of different cultural parameters, surface culture fermentation for 5 days at 25℃ gave maximum results using 2, 1.5 and 2 g of glucose, xylose and ammonium dihydrogen phosphate, respectively. Four hours old inoculum of yeast in a concentration of 3.5% was optimized for maximum bioethanol yield. These optimized parameters resulted in augmented bioethanol production (5.0g/L) by 5.02 folds. This study revelas that W. anomalus IHZ-26 employed was able to covert pentose and hexose sugars simultaneously with efficient ethanol yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24275/rmiq/bio966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu