- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:AKA | Towards monitoring, under..., SNSF | GloBAM - Towards monitori..., NSF | Belmont Forum Collaborati...AKA| Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants GloBAM ,SNSF| GloBAM - Towards monitoring, understanding and forecasting global biomass flows of aerial migrants ,NSF| Belmont Forum Collaborative Research: Biodiversity Scenarios: Towards monitoring, understanding and forecasting Global Biomass flows of Aerial MigrantsAuthors: Bauer, Silke; McNamara, John M.; Barta, Zoltan;pmid: 32370679
pmc: PMC7282917
The timing of migration and migratory steps is highly relevant for fitness. Because environmental conditions vary between years, the optimal time for migration varies accordingly. Therefore, migratory animals could clearly benefit from acquiring information as to when it is the best time to migrate in a specific year. Thus, environmental predictability and variability are fundamental characteristics of migration systems but their relationship and consequence for migratory progression has remained unexplored. We develop a simple dynamic model to identify the optimal migration behaviour in environments that differ in predictability, variability and the number of intermediate stop-over sites. Our results indicate that higher predictability along migration routes enables organisms to better time migration when phenology deviates from its long-term average and thus, increases fitness. Information is particularly valuable in highly variable environments and in the final migration-step, i.e. before the destination. Furthermore, we show that a general strategy for obtaining information in relatively uninformative but variable environments is using intermediate stop-over sites that enable migrants to better predict conditions ahead. Our study contributes to a better understanding of the relationship between animal movement and environmental predictability—an important, yet underappreciated factor that strongly influences migratory progression.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 Netherlands, United KingdomPublisher:Wiley Authors: McNamara, John M.; Barta, Zoltan; Klaassen, Marcel; Bauer, Silke;pmid: 22017534
pmc: PMC3258420
Organisms time activities by using environmental cues to forecast the future availability of important resources. Presently, there is limited understanding of the relationships between cues and optimal timing, and especially about how this relationship will be affected by environmental changes. We develop a general model to explore the relation between a cue and the optimal timing of an important life history activity. The model quantifies the fitness loss for organisms failing to time behaviours optimally. We decompose the immediate change in fitness resulting from environmental changes into a component that is due to changes in the predictive power of the cue and a component that derives from the mismatch of the old response to the cue to the new environmental conditions. Our results show that consequences may range from negative, neutral to positive and are highly dependent on how cue and optimal timing and their relation are specifically affected by environmental changes.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2011.01686.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2011.01686.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2020Publisher:Zenodo Funded by:SNSF | GloBAM - Towards monitori..., NSF | Belmont Forum Collaborati..., AKA | Towards monitoring, under...SNSF| GloBAM - Towards monitoring, understanding and forecasting global biomass flows of aerial migrants ,NSF| Belmont Forum Collaborative Research: Biodiversity Scenarios: Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants ,AKA| Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants GloBAMAuthors: Bauer, Silke; McNamara, John M.; Barta, Zoltan;This is the source R-code for the model investigating optimal timing of migration under environmental variability and predictability. The paper explaining model, scenarios and results is "Environmental variability, reliability of information and the timing of migration" by Silke Bauer, John M. McNamara and Zoltan Barta, published in the Proceedings of the Royal Society B: Biological Sciences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3743019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3743019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020Publisher:Zenodo Funded by:SNSF | GloBAM - Towards monitori..., AKA | Towards monitoring, under..., NSF | Belmont Forum Collaborati...SNSF| GloBAM - Towards monitoring, understanding and forecasting global biomass flows of aerial migrants ,AKA| Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants GloBAM ,NSF| Belmont Forum Collaborative Research: Biodiversity Scenarios: Towards monitoring, understanding and forecasting Global Biomass flows of Aerial MigrantsAuthors: Bauer, Silke; McNamara, John M.; Barta, Zoltan;Abstract The timing of migration and migratory steps is highly relevant for fitness. Since environmental conditions vary between years, the optimal time for migration varies accordingly. Therefore, migratory animals could clearly benefit from acquiring information as to when it is the best time to migrate in a specific year. Thus, environmental predictability and variability are fundamental characteristics of migration systems but their relation and consequence for migratory progression has remained unexplored. We develop a simple dynamic model to identify the optimal migration behaviour in environments that differ in predictability, variability and the number of intermediate stop-over sites. Our results indicate that higher predictability along migration routes enables organisms to better time migration when phenology deviates from its long-term average and thus, increases fitness. Information is particularly valuable in highly variable environments and in the final migration-step, i.e. before the destination. Furthermore, we show that a general strategy for obtaining information in relatively uninformative but variable environments is using intermediate stop-over sites that enable migrants to better predict conditions ahead. Our study contributes to a better understanding of the relation between animal movement and environmental predictability - an important, yet underappreciated factor that strongly influences migratory progression.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4009192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4009192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:AKA | Towards monitoring, under..., SNSF | GloBAM - Towards monitori..., NSF | Belmont Forum Collaborati...AKA| Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants GloBAM ,SNSF| GloBAM - Towards monitoring, understanding and forecasting global biomass flows of aerial migrants ,NSF| Belmont Forum Collaborative Research: Biodiversity Scenarios: Towards monitoring, understanding and forecasting Global Biomass flows of Aerial MigrantsAuthors: Bauer, Silke; McNamara, John M.; Barta, Zoltan;pmid: 32370679
pmc: PMC7282917
The timing of migration and migratory steps is highly relevant for fitness. Because environmental conditions vary between years, the optimal time for migration varies accordingly. Therefore, migratory animals could clearly benefit from acquiring information as to when it is the best time to migrate in a specific year. Thus, environmental predictability and variability are fundamental characteristics of migration systems but their relationship and consequence for migratory progression has remained unexplored. We develop a simple dynamic model to identify the optimal migration behaviour in environments that differ in predictability, variability and the number of intermediate stop-over sites. Our results indicate that higher predictability along migration routes enables organisms to better time migration when phenology deviates from its long-term average and thus, increases fitness. Information is particularly valuable in highly variable environments and in the final migration-step, i.e. before the destination. Furthermore, we show that a general strategy for obtaining information in relatively uninformative but variable environments is using intermediate stop-over sites that enable migrants to better predict conditions ahead. Our study contributes to a better understanding of the relationship between animal movement and environmental predictability—an important, yet underappreciated factor that strongly influences migratory progression.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.0622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 Netherlands, United KingdomPublisher:Wiley Authors: McNamara, John M.; Barta, Zoltan; Klaassen, Marcel; Bauer, Silke;pmid: 22017534
pmc: PMC3258420
Organisms time activities by using environmental cues to forecast the future availability of important resources. Presently, there is limited understanding of the relationships between cues and optimal timing, and especially about how this relationship will be affected by environmental changes. We develop a general model to explore the relation between a cue and the optimal timing of an important life history activity. The model quantifies the fitness loss for organisms failing to time behaviours optimally. We decompose the immediate change in fitness resulting from environmental changes into a component that is due to changes in the predictive power of the cue and a component that derives from the mismatch of the old response to the cue to the new environmental conditions. Our results show that consequences may range from negative, neutral to positive and are highly dependent on how cue and optimal timing and their relation are specifically affected by environmental changes.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2011.01686.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 125 citations 125 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2011.01686.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2020Publisher:Zenodo Funded by:SNSF | GloBAM - Towards monitori..., NSF | Belmont Forum Collaborati..., AKA | Towards monitoring, under...SNSF| GloBAM - Towards monitoring, understanding and forecasting global biomass flows of aerial migrants ,NSF| Belmont Forum Collaborative Research: Biodiversity Scenarios: Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants ,AKA| Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants GloBAMAuthors: Bauer, Silke; McNamara, John M.; Barta, Zoltan;This is the source R-code for the model investigating optimal timing of migration under environmental variability and predictability. The paper explaining model, scenarios and results is "Environmental variability, reliability of information and the timing of migration" by Silke Bauer, John M. McNamara and Zoltan Barta, published in the Proceedings of the Royal Society B: Biological Sciences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3743019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3743019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020Publisher:Zenodo Funded by:SNSF | GloBAM - Towards monitori..., AKA | Towards monitoring, under..., NSF | Belmont Forum Collaborati...SNSF| GloBAM - Towards monitoring, understanding and forecasting global biomass flows of aerial migrants ,AKA| Towards monitoring, understanding and forecasting Global Biomass flows of Aerial Migrants GloBAM ,NSF| Belmont Forum Collaborative Research: Biodiversity Scenarios: Towards monitoring, understanding and forecasting Global Biomass flows of Aerial MigrantsAuthors: Bauer, Silke; McNamara, John M.; Barta, Zoltan;Abstract The timing of migration and migratory steps is highly relevant for fitness. Since environmental conditions vary between years, the optimal time for migration varies accordingly. Therefore, migratory animals could clearly benefit from acquiring information as to when it is the best time to migrate in a specific year. Thus, environmental predictability and variability are fundamental characteristics of migration systems but their relation and consequence for migratory progression has remained unexplored. We develop a simple dynamic model to identify the optimal migration behaviour in environments that differ in predictability, variability and the number of intermediate stop-over sites. Our results indicate that higher predictability along migration routes enables organisms to better time migration when phenology deviates from its long-term average and thus, increases fitness. Information is particularly valuable in highly variable environments and in the final migration-step, i.e. before the destination. Furthermore, we show that a general strategy for obtaining information in relatively uninformative but variable environments is using intermediate stop-over sites that enable migrants to better predict conditions ahead. Our study contributes to a better understanding of the relation between animal movement and environmental predictability - an important, yet underappreciated factor that strongly influences migratory progression.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4009192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4009192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu