- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Elsevier BV Authors: Brett A. Bryan; Susanna Venn; Kelly K. Miller; Lila Jung Gurung;This dataset presents data collected from household surveys from Upper Madi Watershed of Nepal describing the benefits of non-timber forest products (NTFPs) to people of mountain ecosystems, their perceptions of climate change, and perceived impacts of climate change on NTFPs ecosystem services. The data were collected from 278 households that were randomly selected from the four villages in the watershed during the period September to December 2019. The survey assessed socio-demographic information; collected and utilized NTFPs; perceptions of climate change, and; perceived impacts of climate change on NTFPs ecosystem services. These data are important in understanding the benefits of non-timber forest products in mountain ecosystems and the impacts of climate change as the benefits and impacts are currently not well understood. The data will be helpful in formulation and implementation of adaptation strategies to sustain the supply, protection, and management of NTFPs in mountain ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2020.106404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2020.106404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Public Library of Science (PLoS) Aviya Naccarella; Susanna Venn; Susanna Venn; Seraphina C. Cutler; John W. Morgan;How species respond to climate change will depend on biological characteristics, species physiological limits, traits (such as dispersal), and interactions with disturbance. We examine multi-decadal shifts in the distribution of trees at the alpine treeline in response to regional warming and repeated disturbance by fire in the Victorian Alps, south-east Australia. Alpine treelines are composed of Eucalyptus pauciflora subsp. niphophila (Snow Gum, Myrtaceae) species. The location and basal girth of all trees and saplings were recorded across treelines at four mountains in 2002 and 2018. We quantify changes in treeline position (sapling recruitment above treeline) over time in relation to warming and disturbance by fire, and examine changes in stand structure below treeline (stand density, size class analyses). Short-distance advance of the treeline occurred between 2002 and 2018, but was largely restricted to areas that were unburned during this period. No saplings were seen above treeline after two fires, despite evidence that saplings were common pre-fire. Below treeline, subalpine woodland stands were largely resilient to fire; trees resprouted from lignotubers. However, small trees were reduced in number in woodlands when burned twice within a decade. Population dynamics at the alpine treeline were responsive to recent climate change, but other factors (e.g. disturbance) are crucial to understand recruitment trends. Establishment of saplings above treeline was largely restricted to unburned areas. These results indicate fire is a strong demographic filter on treeline dynamics; there is a clear need to frame alpine treeline establishment processes beyond just being a response to climate warming. Long lag periods in treeline change may be expected where recurrent disturbance is a feature of the landscape.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0231339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0231339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Netherlands, France, Denmark, Spain, Netherlands, Italy, Italy, Qatar, Canada, Canada, United Kingdom, United Kingdom, Austria, Italy, France, Finland, Austria, Netherlands, Netherlands, United Kingdom, Netherlands, Switzerland, Austria, United States, Italy, Spain, Italy, Netherlands, Sweden, Qatar, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | SCORE: Supply Chain Optim..., DFG | German Centre for Integra..., EC | IMBALANCE-P +1 projectsUKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| IMBALANCE-P ,RSF| Nitrogen nutrition of alpine plants: adaptation to a limited soil resourceSusanna Venn; Sandra Angers-Blondin; Marcello Tomaselli; Sonja Wipf; Juha M. Alatalo; Juha M. Alatalo; Sigrid Schøler Nielsen; Tage Vowles; Colleen M. Iversen; F. S. Chapin; Logan T. Berner; Tara Zamin; Bruce C. Forbes; Anne D. Bjorkman; Anne D. Bjorkman; Martin Wilmking; James M G Hudson; Jens Kattge; Michele Carbognani; Ülo Niinemets; Bo Elberling; Peter Manning; Joseph M. Craine; Kevin C. Guay; Laura Siegwart Collier; Oriol Grau; Oriol Grau; Stef Weijers; Sarah C. Elmendorf; Haydn J.D. Thomas; S. F. Oberbauer; Heather D. Alexander; Chelsea J. Little; Chelsea J. Little; Ken D. Tape; Nadejda A. Soudzilovskaia; Josep Peñuelas; S. N. Sheremetiev; Johan Olofsson; Scott J. Goetz; Marko J. Spasojevic; Katherine S. Christie; M. te Beest; M. te Beest; Johannes H. C. Cornelissen; Esther R. Frei; Elisabeth J. Cooper; James D. M. Speed; Vladimir G. Onipchenko; Walton A. Green; Aino Kulonen; Signe Normand; F. T. de Vries; Peter B. Reich; Peter B. Reich; Ann Milbau; Gregory H. R. Henry; Steven Jansen; Yusuke Onoda; Giandiego Campetella; Brandon S. Schamp; Maxime Tremblay; Janet S. Prevéy; Philip A. Wookey; Esther Lévesque; Sabine B. Rumpf; Sabine B. Rumpf; Trevor C. Lantz; Maitane Iturrate-Garcia; Brody Sandel; William K. Cornwell; Rohan Shetti; Alessandro Petraglia; Matteo Dainese; Pieter S. A. Beck; Karl Hülber; Daan Blok; Urs A. Treier; Damien Georges; Luise Hermanutz; Michael Kleyer; Robert G. Björk; Bruno Enrico Leone Cerabolini; Jacob Nabe-Nielsen; Monique M. P. D. Heijmans; Wim A. Ozinga; Allan Buras; Peter Poschlod; Sandra Díaz; Sandra Díaz; Christian Rixen; Benjamin Bond-Lamberty; Laurent J. Lamarque; Anu Eskelinen; Anu Eskelinen; Robert D. Hollister; Isla H. Myers-Smith; Nadja Rüger; Elina Kaarlejärvi; Elina Kaarlejärvi; Elina Kaarlejärvi; Martin Hallinger; Josep M. Ninot; P.M. van Bodegom; Jill F. Johnstone; Mark Vellend; Francesca Jaroszynska; Francesca Jaroszynska; Gabriela Schaepman-Strub; Michael Bahn; Katharine N. Suding; Alba Anadon-Rosell; Alba Anadon-Rosell; Benjamin Blonder; Benjamin Blonder; Benjamin Blonder; Andrew J. Trant; Anders Michelsen; Paul Grogan; Agata Buchwal; Agata Buchwal;pmid: 32165619
pmc: PMC7067758
AbstractThe majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
CORE arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880119Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/1893/30857Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41j4n2g3Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryNature CommunicationsArticle . 2020Diposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYServeur académique lausannoisArticle . 2020License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di VeronaArticle . 2020Data sources: IRIS - Università degli Studi di VeronaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15014-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 50visibility views 50 download downloads 63 Powered bymore_vert CORE arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880119Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/1893/30857Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41j4n2g3Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryNature CommunicationsArticle . 2020Diposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYServeur académique lausannoisArticle . 2020License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di VeronaArticle . 2020Data sources: IRIS - Università degli Studi di VeronaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15014-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2023 AustraliaPublisher:California Digital Library (CDL) Jessica A. Rowland; Emily Nicholson; Jose-Rafael Ferrer-Paris; David W. Keith; Nicholas Murray; Chloe F. Sato; Anikó B. Tóth; Arn D. Tolsma; Susanna Venn; Marianne Asmüssen; Patricio Pliscoff; Carlos Zambrana‐Torrelio; Rebecca E. Lester; Tracey J. Regan;Climate change has pervasive impacts on Earth’s ecosystems, but the diversity and complexity of ecosystems makes estimating the severity of impacts and the resulting risk of collapse difficult. In this perspective, we conceptualise the challenge of understanding how climate change alters ecosystems, and how to reliably measure those changes in ecosystem risk assessments, focussing on the IUCN Red List of Ecosystems. We propose solutions to resolve these challenges – using diverse teams, conceptual models, diverse using data sources including projections, learning from analogous ecosystems, and evaluating uncertainties – and we identify research gaps to bridge these challenges. Together, these solutions will improve our capacity to produce reliable assessments of collapse risk under climate change to inform timely and effective ecosystem conservation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/x2hs4q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/x2hs4q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Austria, Italy, Denmark, United Kingdom, Italy, AustriaPublisher:Springer Science and Business Media LLC Funded by:NSF | PostDoctoral Research Fel..., NSF | Timing is everything: sea..., NSERC +8 projectsNSF| PostDoctoral Research Fellowship ,NSF| Timing is everything: seasonality and phenological dynamics linking species, communities, and trophic feedbacks in the Low- vs. High Arctic ,NSERC ,NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| The Bonanza Creek (BNZ) LTER: Regional Consequences of Changing Climate-Disturbance Interactions for the Resilience of Alaska's Boreal Forest ,NSF| Arctic Plant Phenology - Learning through Engaged Science ,UKRI| Climate as a driver of shrub expansion and tundra greening ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,NSF| Collaborative Research: Linking belowground phenology and ecosystem function in a warming Arctic ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations. ,NSF| Warming and drying effects on tundra carbon balanceChristian Rixen; Robert D. Hollister; Isla H. Myers-Smith; Nadja Rüger; Christopher W. Kopp; Isabel W. Ashton; Anne D. Bjorkman; Philipp R. Semenchuk; Tiffany G. Troxler; Bo Elberling; Kari Klanderud; Sarah C. Elmendorf; Ørjan Totland; Marguerite Mauritz; Susanna Venn; Gregory H. R. Henry; Edward A. G. Schuur; Karin Clark; Jeffrey M. Welker; Jeffrey M. Welker; Sonja Wipf; Ulf Molau; Eric Post; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Sabine B. Rumpf; Jane G. Smith; Nicoletta Cannone; Chelsea Chisholm; Janet S. Prevéy; Elisabeth J. Cooper; Steven F. Oberbauer; Toke T. Høye; Susan M. Natali; Carl-Henrik Wahren; Katharine N. Suding; Niels Martin Schmidt; Zoe A. Panchen; Anna Maria Fosaa;Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Informa UK Limited Authors: Iris T. Hickman; James S. Camac; Susanna E. Venn; John W. Morgan;Alpine summit vegetation, the highest point of species geographical distributions, is vulnerable to climate change (thermal niche contraction), and there is evidence of change in Northern Hemisphere summits. However, summits are experiencing multifaceted change due to warming and increasing fire frequency. Little is known about how these factors are affecting alpine summit vegetation. We used a revisitation approach to capture the long-term (eighteen years) dynamic changes in Australian alpine plant summit community patterns and to understand the mechanisms of change. We found that vegetation change was influenced by climate and moderated by site-specific factors. There was increased shrub cover over time; however, summit vegetation was largely stable unless disturbed. Fire-disturbed summits experienced higher instability in their vegetation cover over time. Linear mixed-effect models indicated that as time since fire increased and the growing degrees accumulated, there was a strong positive effect on forb and graminoid cover and a negative effect on shrub cover. Forb cover was higher at cooler, wetter, higher-elevation summits. These findings indicate the multifaceted nature of change that must be accounted for in alpine vegetation studies. We show that alpine summit vegetation will respond multidirectionally to a warming climate and changing fire regimes, with outcomes likely contingent on life history characteristics.
Arctic, Antarctic, a... arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2024.2429864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Arctic, Antarctic, a... arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2024.2429864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Jerónimo Vázquez-Ramírez; Susanna E. Venn;The early life-history stages of plants, such as germination and seedling establishment, depend on favorable environmental conditions. Changes in the environment at high altitude and high latitude regions, as a consequence of climate change, will significantly affect these life stages and may have profound effects on species recruitment and survival. Here, we synthesize the current knowledge of climate change effects on treeline, tundra, and alpine plants’ early life-history stages. We systematically searched the available literature on this subject up until February 2020 and recovered 835 potential articles that matched our search terms. From these, we found 39 studies that matched our selection criteria. We characterized the studies within our review and performed a qualitative and quantitative analysis of the extracted meta-data regarding the climatic effects likely to change in these regions, including projected warming, early snowmelt, changes in precipitation, nutrient availability and their effects on seed maturation, seed dormancy, germination, seedling emergence and seedling establishment. Although the studies showed high variability in their methods and studied species, the qualitative and quantitative analysis of the extracted data allowed us to detect existing patterns and knowledge gaps. For example, warming temperatures seemed to favor all studied life stages except seedling establishment, a decrease in precipitation had a strong negative effect on seed stages and, surprisingly, early snowmelt had a neutral effect on seed dormancy and germination but a positive effect on seedling establishment. For some of the studied life stages, data within the literature were too limited to identify a precise effect. There is still a need for investigations that increase our understanding of the climate change impacts on high altitude and high latitude plants’ reproductive processes, as this is crucial for plant conservation and evidence-based management of these environments. Finally, we make recommendations for further research based on the identified knowledge gaps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10040768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10040768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:ARC | Discovery Early Career Re..., UKRI | E3 - Edinburgh Earth and ...ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training PartnershipAuthors: Susanna E. Venn; Haydn J. D. Thomas;doi: 10.1002/ecs2.3393
AbstractAlpine snowbed communities are characterized as having areas of longer lasting snow cover duration compared with the surrounding landscape. The predictable accumulation of deep and long‐lasting snow on lee side ridges drives a unique ecology, providing stable microclimatic conditions under the snow through winter, supplying meltwater in spring, and controlling many biological processes. The timing and rate of plant litter decomposition are key controls on the nutrient balance of snowbed communities, and are thought to be strongly driven by snow dynamics. However, little is known about how the patterns and timing of snowmelt affect decomposition, nor how long these effects last into the growing season. We investigated the influence of snowmelt timing on decomposition rates across an alpine snowbed community by burying standardized plant litter (rooibos and green tea), at three incubation times (whole year, winter+spring, and summer), across three snowmelt zones. Decomposition rate (as percent mass loss of tea) was significantly higher in early‐melting zones compared to late‐melting zones, particularly for the recalcitrant litter (rooibos tea). Decomposition was also affected by the season(s) of incubation and was greatest where tea was buried for the whole year, or only over summer, with winter + spring only incubations decomposing the least. However, decomposition was more strongly influenced by litter quality (type of tea) than either the timing of snowmelt or seasonality. These results provide further understanding about how changes to the timing of snowmelt may in turn transform these rare and unique plant communities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.3393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.3393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV K. Steinbauer; A. Lamprecht; M. Winkler; V. Di Cecco; V. Fasching; D. Ghosn; A. Maringer; I. Remoundou; M. Suen; A. Stanisci; S. Venn; H. Pauli;High-mountain plant communities are strongly determined by abiotic conditions, especially low temperature, and are therefore susceptible to effects of climate warming. Rising temperatures, however, also lead to increased evapotranspiration, which, together with projected shifts in seasonal precipitation patterns, could lead to prolonged, detrimental water deficiencies. The current study aims at comparing alpine plant communities along elevation and water availability gradients from humid conditions (north-eastern Alps) to a moderate (Central Apennines) and a pronounced dry period during summer (Lefka Ori, Crete) in the Mediterranean area. We do this in order to (1) detect relationships between community-based indices (plant functional leaf and growth traits, thermic vegetation indicator, plant life forms, vegetation cover and diversity) and soil temperature and snow duration and (2) assess if climatic changes have already affected the vegetation, by determining directional changes over time (14-year period; 2001-2015) in these indices in the three regions. Plant community indices responded to decreasing temperatures along the elevation gradient in the NE-Alps and the Apennines, but this elevation effect almost disappeared in the summer-dry mountains of Crete. This suggests a shift from low-temperature to drought-dominated ecological filters. Leaf trait (Leaf Dry Matter Content and Specific Leaf Area) responses changed in direction from the Alps to the Apennines, indicating that drought effects already become discernible at the northern margin of the Mediterranean. Over time, a slight increase in vegetation cover was found in all regions, but thermophilisation occurred only in the NE-Alps and Apennines, accompanied by a decline of cold-adapted cushion plants in the Alps. On Crete, xeromorphic shrubs were increasing in abundance. Although critical biodiversity losses have not yet been observed, an intensified monitoring of combined warming-drought impacts will be required in view of threatened alpine plants that are either locally restricted in the south or weakly adapted to drought in the north.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100435Susanna Venn; Susanna Venn; Matt White; Stephen Harris; Michael A. Nash; Michael A. Nash; Ary A. Hoffmann; Ary A. Hoffmann; Emma Burns; Emma Burns; K.A.J. Stott; Richard J. Williams; Richard J. Williams; W. A. Papst; James S. Camac; John W. Morgan; Carl-Henrik Wahren; Carl-Henrik Wahren;doi: 10.1111/aec.12266
handle: 1885/98993
AbstractAlpine ecosystems are globally at risk from climate change. We use the International Union for the Conservation of Nature (IUCN) Red List Criteria for ecosystems to assess the risk of ecosystem collapse in Australian alpine snow patch herbfields. These ecosystems occur on both mainland Australia and Tasmania. They are restricted to steep, south‐easterly slopes where snow pack persists well into the summer growing season. Consequently, they are rare, and have high conservation significance. We evaluated the risk of snow patch herbfield ‘ecosystem collapse’ against criteria that accounted for the ecosystem's restricted distribution, projected decline in the snowpack and increased rates of invasion by taller growing native species of shrub and grass. Our analyses revealed considerable uncertainty in estimates of risk based on some criteria, particularly those related to thresholds of ecosystem collapse caused by biotic change. On the basis of the IUCN Red List criteria, we conclude that the ecosystem is ‘endangered’. This is because of the restricted geographical distribution of the ecosystem, a substantial and highly likely decline in the abundance of snow (the principal abiotic driver of the ecosystem), and the prospect of invasion of much of the ecosystem by taller growing native shrubs and grasses. Our case study demonstrates the utility of the Red List methodology for assessing risks to biodiversity in rare ecosystems where changes to both abiotic factors and the relative dominance of native species constitute major threats. Our findings indicate the importance of snow patch herbfields as refugia for dwarf alpine plant species in the face of climate change, the need for continued monitoring, the removal of feral animals from the Australian Alps and scenario planning.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Elsevier BV Authors: Brett A. Bryan; Susanna Venn; Kelly K. Miller; Lila Jung Gurung;This dataset presents data collected from household surveys from Upper Madi Watershed of Nepal describing the benefits of non-timber forest products (NTFPs) to people of mountain ecosystems, their perceptions of climate change, and perceived impacts of climate change on NTFPs ecosystem services. The data were collected from 278 households that were randomly selected from the four villages in the watershed during the period September to December 2019. The survey assessed socio-demographic information; collected and utilized NTFPs; perceptions of climate change, and; perceived impacts of climate change on NTFPs ecosystem services. These data are important in understanding the benefits of non-timber forest products in mountain ecosystems and the impacts of climate change as the benefits and impacts are currently not well understood. The data will be helpful in formulation and implementation of adaptation strategies to sustain the supply, protection, and management of NTFPs in mountain ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2020.106404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2020.106404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Public Library of Science (PLoS) Aviya Naccarella; Susanna Venn; Susanna Venn; Seraphina C. Cutler; John W. Morgan;How species respond to climate change will depend on biological characteristics, species physiological limits, traits (such as dispersal), and interactions with disturbance. We examine multi-decadal shifts in the distribution of trees at the alpine treeline in response to regional warming and repeated disturbance by fire in the Victorian Alps, south-east Australia. Alpine treelines are composed of Eucalyptus pauciflora subsp. niphophila (Snow Gum, Myrtaceae) species. The location and basal girth of all trees and saplings were recorded across treelines at four mountains in 2002 and 2018. We quantify changes in treeline position (sapling recruitment above treeline) over time in relation to warming and disturbance by fire, and examine changes in stand structure below treeline (stand density, size class analyses). Short-distance advance of the treeline occurred between 2002 and 2018, but was largely restricted to areas that were unburned during this period. No saplings were seen above treeline after two fires, despite evidence that saplings were common pre-fire. Below treeline, subalpine woodland stands were largely resilient to fire; trees resprouted from lignotubers. However, small trees were reduced in number in woodlands when burned twice within a decade. Population dynamics at the alpine treeline were responsive to recent climate change, but other factors (e.g. disturbance) are crucial to understand recruitment trends. Establishment of saplings above treeline was largely restricted to unburned areas. These results indicate fire is a strong demographic filter on treeline dynamics; there is a clear need to frame alpine treeline establishment processes beyond just being a response to climate warming. Long lag periods in treeline change may be expected where recurrent disturbance is a feature of the landscape.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0231339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0231339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Netherlands, France, Denmark, Spain, Netherlands, Italy, Italy, Qatar, Canada, Canada, United Kingdom, United Kingdom, Austria, Italy, France, Finland, Austria, Netherlands, Netherlands, United Kingdom, Netherlands, Switzerland, Austria, United States, Italy, Spain, Italy, Netherlands, Sweden, Qatar, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | SCORE: Supply Chain Optim..., DFG | German Centre for Integra..., EC | IMBALANCE-P +1 projectsUKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| IMBALANCE-P ,RSF| Nitrogen nutrition of alpine plants: adaptation to a limited soil resourceSusanna Venn; Sandra Angers-Blondin; Marcello Tomaselli; Sonja Wipf; Juha M. Alatalo; Juha M. Alatalo; Sigrid Schøler Nielsen; Tage Vowles; Colleen M. Iversen; F. S. Chapin; Logan T. Berner; Tara Zamin; Bruce C. Forbes; Anne D. Bjorkman; Anne D. Bjorkman; Martin Wilmking; James M G Hudson; Jens Kattge; Michele Carbognani; Ülo Niinemets; Bo Elberling; Peter Manning; Joseph M. Craine; Kevin C. Guay; Laura Siegwart Collier; Oriol Grau; Oriol Grau; Stef Weijers; Sarah C. Elmendorf; Haydn J.D. Thomas; S. F. Oberbauer; Heather D. Alexander; Chelsea J. Little; Chelsea J. Little; Ken D. Tape; Nadejda A. Soudzilovskaia; Josep Peñuelas; S. N. Sheremetiev; Johan Olofsson; Scott J. Goetz; Marko J. Spasojevic; Katherine S. Christie; M. te Beest; M. te Beest; Johannes H. C. Cornelissen; Esther R. Frei; Elisabeth J. Cooper; James D. M. Speed; Vladimir G. Onipchenko; Walton A. Green; Aino Kulonen; Signe Normand; F. T. de Vries; Peter B. Reich; Peter B. Reich; Ann Milbau; Gregory H. R. Henry; Steven Jansen; Yusuke Onoda; Giandiego Campetella; Brandon S. Schamp; Maxime Tremblay; Janet S. Prevéy; Philip A. Wookey; Esther Lévesque; Sabine B. Rumpf; Sabine B. Rumpf; Trevor C. Lantz; Maitane Iturrate-Garcia; Brody Sandel; William K. Cornwell; Rohan Shetti; Alessandro Petraglia; Matteo Dainese; Pieter S. A. Beck; Karl Hülber; Daan Blok; Urs A. Treier; Damien Georges; Luise Hermanutz; Michael Kleyer; Robert G. Björk; Bruno Enrico Leone Cerabolini; Jacob Nabe-Nielsen; Monique M. P. D. Heijmans; Wim A. Ozinga; Allan Buras; Peter Poschlod; Sandra Díaz; Sandra Díaz; Christian Rixen; Benjamin Bond-Lamberty; Laurent J. Lamarque; Anu Eskelinen; Anu Eskelinen; Robert D. Hollister; Isla H. Myers-Smith; Nadja Rüger; Elina Kaarlejärvi; Elina Kaarlejärvi; Elina Kaarlejärvi; Martin Hallinger; Josep M. Ninot; P.M. van Bodegom; Jill F. Johnstone; Mark Vellend; Francesca Jaroszynska; Francesca Jaroszynska; Gabriela Schaepman-Strub; Michael Bahn; Katharine N. Suding; Alba Anadon-Rosell; Alba Anadon-Rosell; Benjamin Blonder; Benjamin Blonder; Benjamin Blonder; Andrew J. Trant; Anders Michelsen; Paul Grogan; Agata Buchwal; Agata Buchwal;pmid: 32165619
pmc: PMC7067758
AbstractThe majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
CORE arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880119Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/1893/30857Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41j4n2g3Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryNature CommunicationsArticle . 2020Diposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYServeur académique lausannoisArticle . 2020License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di VeronaArticle . 2020Data sources: IRIS - Università degli Studi di VeronaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15014-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 50visibility views 50 download downloads 63 Powered bymore_vert CORE arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880119Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/1893/30857Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41j4n2g3Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTANature CommunicationsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryNature CommunicationsArticle . 2020Diposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2020License: CC BYServeur académique lausannoisArticle . 2020License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedMunin - Open Research ArchiveArticle . 2020 . Peer-reviewedData sources: Munin - Open Research ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2020License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di VeronaArticle . 2020Data sources: IRIS - Università degli Studi di VeronaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15014-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2023 AustraliaPublisher:California Digital Library (CDL) Jessica A. Rowland; Emily Nicholson; Jose-Rafael Ferrer-Paris; David W. Keith; Nicholas Murray; Chloe F. Sato; Anikó B. Tóth; Arn D. Tolsma; Susanna Venn; Marianne Asmüssen; Patricio Pliscoff; Carlos Zambrana‐Torrelio; Rebecca E. Lester; Tracey J. Regan;Climate change has pervasive impacts on Earth’s ecosystems, but the diversity and complexity of ecosystems makes estimating the severity of impacts and the resulting risk of collapse difficult. In this perspective, we conceptualise the challenge of understanding how climate change alters ecosystems, and how to reliably measure those changes in ecosystem risk assessments, focussing on the IUCN Red List of Ecosystems. We propose solutions to resolve these challenges – using diverse teams, conceptual models, diverse using data sources including projections, learning from analogous ecosystems, and evaluating uncertainties – and we identify research gaps to bridge these challenges. Together, these solutions will improve our capacity to produce reliable assessments of collapse risk under climate change to inform timely and effective ecosystem conservation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/x2hs4q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/x2hs4q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Austria, Italy, Denmark, United Kingdom, Italy, AustriaPublisher:Springer Science and Business Media LLC Funded by:NSF | PostDoctoral Research Fel..., NSF | Timing is everything: sea..., NSERC +8 projectsNSF| PostDoctoral Research Fellowship ,NSF| Timing is everything: seasonality and phenological dynamics linking species, communities, and trophic feedbacks in the Low- vs. High Arctic ,NSERC ,NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| The Bonanza Creek (BNZ) LTER: Regional Consequences of Changing Climate-Disturbance Interactions for the Resilience of Alaska's Boreal Forest ,NSF| Arctic Plant Phenology - Learning through Engaged Science ,UKRI| Climate as a driver of shrub expansion and tundra greening ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,NSF| Collaborative Research: Linking belowground phenology and ecosystem function in a warming Arctic ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations. ,NSF| Warming and drying effects on tundra carbon balanceChristian Rixen; Robert D. Hollister; Isla H. Myers-Smith; Nadja Rüger; Christopher W. Kopp; Isabel W. Ashton; Anne D. Bjorkman; Philipp R. Semenchuk; Tiffany G. Troxler; Bo Elberling; Kari Klanderud; Sarah C. Elmendorf; Ørjan Totland; Marguerite Mauritz; Susanna Venn; Gregory H. R. Henry; Edward A. G. Schuur; Karin Clark; Jeffrey M. Welker; Jeffrey M. Welker; Sonja Wipf; Ulf Molau; Eric Post; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Sabine B. Rumpf; Jane G. Smith; Nicoletta Cannone; Chelsea Chisholm; Janet S. Prevéy; Elisabeth J. Cooper; Steven F. Oberbauer; Toke T. Høye; Susan M. Natali; Carl-Henrik Wahren; Katharine N. Suding; Niels Martin Schmidt; Zoe A. Panchen; Anna Maria Fosaa;Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Informa UK Limited Authors: Iris T. Hickman; James S. Camac; Susanna E. Venn; John W. Morgan;Alpine summit vegetation, the highest point of species geographical distributions, is vulnerable to climate change (thermal niche contraction), and there is evidence of change in Northern Hemisphere summits. However, summits are experiencing multifaceted change due to warming and increasing fire frequency. Little is known about how these factors are affecting alpine summit vegetation. We used a revisitation approach to capture the long-term (eighteen years) dynamic changes in Australian alpine plant summit community patterns and to understand the mechanisms of change. We found that vegetation change was influenced by climate and moderated by site-specific factors. There was increased shrub cover over time; however, summit vegetation was largely stable unless disturbed. Fire-disturbed summits experienced higher instability in their vegetation cover over time. Linear mixed-effect models indicated that as time since fire increased and the growing degrees accumulated, there was a strong positive effect on forb and graminoid cover and a negative effect on shrub cover. Forb cover was higher at cooler, wetter, higher-elevation summits. These findings indicate the multifaceted nature of change that must be accounted for in alpine vegetation studies. We show that alpine summit vegetation will respond multidirectionally to a warming climate and changing fire regimes, with outcomes likely contingent on life history characteristics.
Arctic, Antarctic, a... arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2024.2429864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Arctic, Antarctic, a... arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2024.2429864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Jerónimo Vázquez-Ramírez; Susanna E. Venn;The early life-history stages of plants, such as germination and seedling establishment, depend on favorable environmental conditions. Changes in the environment at high altitude and high latitude regions, as a consequence of climate change, will significantly affect these life stages and may have profound effects on species recruitment and survival. Here, we synthesize the current knowledge of climate change effects on treeline, tundra, and alpine plants’ early life-history stages. We systematically searched the available literature on this subject up until February 2020 and recovered 835 potential articles that matched our search terms. From these, we found 39 studies that matched our selection criteria. We characterized the studies within our review and performed a qualitative and quantitative analysis of the extracted meta-data regarding the climatic effects likely to change in these regions, including projected warming, early snowmelt, changes in precipitation, nutrient availability and their effects on seed maturation, seed dormancy, germination, seedling emergence and seedling establishment. Although the studies showed high variability in their methods and studied species, the qualitative and quantitative analysis of the extracted data allowed us to detect existing patterns and knowledge gaps. For example, warming temperatures seemed to favor all studied life stages except seedling establishment, a decrease in precipitation had a strong negative effect on seed stages and, surprisingly, early snowmelt had a neutral effect on seed dormancy and germination but a positive effect on seedling establishment. For some of the studied life stages, data within the literature were too limited to identify a precise effect. There is still a need for investigations that increase our understanding of the climate change impacts on high altitude and high latitude plants’ reproductive processes, as this is crucial for plant conservation and evidence-based management of these environments. Finally, we make recommendations for further research based on the identified knowledge gaps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10040768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants10040768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:ARC | Discovery Early Career Re..., UKRI | E3 - Edinburgh Earth and ...ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training PartnershipAuthors: Susanna E. Venn; Haydn J. D. Thomas;doi: 10.1002/ecs2.3393
AbstractAlpine snowbed communities are characterized as having areas of longer lasting snow cover duration compared with the surrounding landscape. The predictable accumulation of deep and long‐lasting snow on lee side ridges drives a unique ecology, providing stable microclimatic conditions under the snow through winter, supplying meltwater in spring, and controlling many biological processes. The timing and rate of plant litter decomposition are key controls on the nutrient balance of snowbed communities, and are thought to be strongly driven by snow dynamics. However, little is known about how the patterns and timing of snowmelt affect decomposition, nor how long these effects last into the growing season. We investigated the influence of snowmelt timing on decomposition rates across an alpine snowbed community by burying standardized plant litter (rooibos and green tea), at three incubation times (whole year, winter+spring, and summer), across three snowmelt zones. Decomposition rate (as percent mass loss of tea) was significantly higher in early‐melting zones compared to late‐melting zones, particularly for the recalcitrant litter (rooibos tea). Decomposition was also affected by the season(s) of incubation and was greatest where tea was buried for the whole year, or only over summer, with winter + spring only incubations decomposing the least. However, decomposition was more strongly influenced by litter quality (type of tea) than either the timing of snowmelt or seasonality. These results provide further understanding about how changes to the timing of snowmelt may in turn transform these rare and unique plant communities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.3393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.3393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV K. Steinbauer; A. Lamprecht; M. Winkler; V. Di Cecco; V. Fasching; D. Ghosn; A. Maringer; I. Remoundou; M. Suen; A. Stanisci; S. Venn; H. Pauli;High-mountain plant communities are strongly determined by abiotic conditions, especially low temperature, and are therefore susceptible to effects of climate warming. Rising temperatures, however, also lead to increased evapotranspiration, which, together with projected shifts in seasonal precipitation patterns, could lead to prolonged, detrimental water deficiencies. The current study aims at comparing alpine plant communities along elevation and water availability gradients from humid conditions (north-eastern Alps) to a moderate (Central Apennines) and a pronounced dry period during summer (Lefka Ori, Crete) in the Mediterranean area. We do this in order to (1) detect relationships between community-based indices (plant functional leaf and growth traits, thermic vegetation indicator, plant life forms, vegetation cover and diversity) and soil temperature and snow duration and (2) assess if climatic changes have already affected the vegetation, by determining directional changes over time (14-year period; 2001-2015) in these indices in the three regions. Plant community indices responded to decreasing temperatures along the elevation gradient in the NE-Alps and the Apennines, but this elevation effect almost disappeared in the summer-dry mountains of Crete. This suggests a shift from low-temperature to drought-dominated ecological filters. Leaf trait (Leaf Dry Matter Content and Specific Leaf Area) responses changed in direction from the Alps to the Apennines, indicating that drought effects already become discernible at the northern margin of the Mediterranean. Over time, a slight increase in vegetation cover was found in all regions, but thermophilisation occurred only in the NE-Alps and Apennines, accompanied by a decline of cold-adapted cushion plants in the Alps. On Crete, xeromorphic shrubs were increasing in abundance. Although critical biodiversity losses have not yet been observed, an intensified monitoring of combined warming-drought impacts will be required in view of threatened alpine plants that are either locally restricted in the south or weakly adapted to drought in the north.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100435Susanna Venn; Susanna Venn; Matt White; Stephen Harris; Michael A. Nash; Michael A. Nash; Ary A. Hoffmann; Ary A. Hoffmann; Emma Burns; Emma Burns; K.A.J. Stott; Richard J. Williams; Richard J. Williams; W. A. Papst; James S. Camac; John W. Morgan; Carl-Henrik Wahren; Carl-Henrik Wahren;doi: 10.1111/aec.12266
handle: 1885/98993
AbstractAlpine ecosystems are globally at risk from climate change. We use the International Union for the Conservation of Nature (IUCN) Red List Criteria for ecosystems to assess the risk of ecosystem collapse in Australian alpine snow patch herbfields. These ecosystems occur on both mainland Australia and Tasmania. They are restricted to steep, south‐easterly slopes where snow pack persists well into the summer growing season. Consequently, they are rare, and have high conservation significance. We evaluated the risk of snow patch herbfield ‘ecosystem collapse’ against criteria that accounted for the ecosystem's restricted distribution, projected decline in the snowpack and increased rates of invasion by taller growing native species of shrub and grass. Our analyses revealed considerable uncertainty in estimates of risk based on some criteria, particularly those related to thresholds of ecosystem collapse caused by biotic change. On the basis of the IUCN Red List criteria, we conclude that the ecosystem is ‘endangered’. This is because of the restricted geographical distribution of the ecosystem, a substantial and highly likely decline in the abundance of snow (the principal abiotic driver of the ecosystem), and the prospect of invasion of much of the ecosystem by taller growing native shrubs and grasses. Our case study demonstrates the utility of the Red List methodology for assessing risks to biodiversity in rare ecosystems where changes to both abiotic factors and the relative dominance of native species constitute major threats. Our findings indicate the importance of snow patch herbfields as refugia for dwarf alpine plant species in the face of climate change, the need for continued monitoring, the removal of feral animals from the Australian Alps and scenario planning.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu