
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Seeds and Seedlings in a Changing World: A Systematic Review and Meta-Analysis from High Altitude and High Latitude Ecosystems

The early life-history stages of plants, such as germination and seedling establishment, depend on favorable environmental conditions. Changes in the environment at high altitude and high latitude regions, as a consequence of climate change, will significantly affect these life stages and may have profound effects on species recruitment and survival. Here, we synthesize the current knowledge of climate change effects on treeline, tundra, and alpine plants’ early life-history stages. We systematically searched the available literature on this subject up until February 2020 and recovered 835 potential articles that matched our search terms. From these, we found 39 studies that matched our selection criteria. We characterized the studies within our review and performed a qualitative and quantitative analysis of the extracted meta-data regarding the climatic effects likely to change in these regions, including projected warming, early snowmelt, changes in precipitation, nutrient availability and their effects on seed maturation, seed dormancy, germination, seedling emergence and seedling establishment. Although the studies showed high variability in their methods and studied species, the qualitative and quantitative analysis of the extracted data allowed us to detect existing patterns and knowledge gaps. For example, warming temperatures seemed to favor all studied life stages except seedling establishment, a decrease in precipitation had a strong negative effect on seed stages and, surprisingly, early snowmelt had a neutral effect on seed dormancy and germination but a positive effect on seedling establishment. For some of the studied life stages, data within the literature were too limited to identify a precise effect. There is still a need for investigations that increase our understanding of the climate change impacts on high altitude and high latitude plants’ reproductive processes, as this is crucial for plant conservation and evidence-based management of these environments. Finally, we make recommendations for further research based on the identified knowledge gaps.
- Deakin University Australia
- Deakin University Australia
treeline, tundra, alpine, Botany, seedling establishment, climate change, germination, QK1-989, Systematic Review
treeline, tundra, alpine, Botany, seedling establishment, climate change, germination, QK1-989, Systematic Review
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
