- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Funded by:NWO | Innovative analytics for ...NWO| Innovative analytics for therapeutic-oligonucleotide research (InnovATOR)Bin Yan; Koen K.W. van Asseldonk; Baptiste Schindler; Isabelle Compagnon; Anouk M. Rijs;The nucleotide adenosine-5′-triphosphate (ATP) is the coenzyme selected by nature to provide energy for its cellular processes through the ATP hydrolysis reaction. Although the crystal structures and the general working principles of numerous ATP hydrolases (ATPases) are generally known, this omnipresent ATP conversion reaction is not fully understood at the level of local interactions. Questions such as “How does the peptide environment of the active sites of ATPases affect their association with ATP and the consecutive reaction of ATP?” and “Why is the conversion of ATP to ADP preferred over other reactions at the active site?” await detailed answers at the molecular level. Here, tandem mass spectrometry (MS) based techniques are applied to answer these questions. Gas phase studies indicate that the conversion of ATP to ADP is a charge state driven process of which the behaviour varies dramatically with subtle changes in the ATP binding peptide. Of the peptides and peptide mimics studied, only the Ac-Arg-NH2 form of arginine actively regulates the hydrolysis of ATP, which proceeds through the sequential release of the ADP • peptide complex and ADP. Relative ion activation studies of the fragmentation patterns of the ATP • Ac-Arg-NH2 complex show that phosphate bond dissociation is preferred over breakage of the non-covalent bond between ATP and the peptide mimic, which coincidentally agrees with the behaviour of catalysed ATP hydrolysis reaction in solution.
Radboud Repository arrow_drop_down International Journal of Mass SpectrometryArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Mass SpectrometryArticle . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijms.2024.117393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down International Journal of Mass SpectrometryArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Mass SpectrometryArticle . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijms.2024.117393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Funded by:NWO | Innovative analytics for ...NWO| Innovative analytics for therapeutic-oligonucleotide research (InnovATOR)Bin Yan; Koen K.W. van Asseldonk; Baptiste Schindler; Isabelle Compagnon; Anouk M. Rijs;The nucleotide adenosine-5′-triphosphate (ATP) is the coenzyme selected by nature to provide energy for its cellular processes through the ATP hydrolysis reaction. Although the crystal structures and the general working principles of numerous ATP hydrolases (ATPases) are generally known, this omnipresent ATP conversion reaction is not fully understood at the level of local interactions. Questions such as “How does the peptide environment of the active sites of ATPases affect their association with ATP and the consecutive reaction of ATP?” and “Why is the conversion of ATP to ADP preferred over other reactions at the active site?” await detailed answers at the molecular level. Here, tandem mass spectrometry (MS) based techniques are applied to answer these questions. Gas phase studies indicate that the conversion of ATP to ADP is a charge state driven process of which the behaviour varies dramatically with subtle changes in the ATP binding peptide. Of the peptides and peptide mimics studied, only the Ac-Arg-NH2 form of arginine actively regulates the hydrolysis of ATP, which proceeds through the sequential release of the ADP • peptide complex and ADP. Relative ion activation studies of the fragmentation patterns of the ATP • Ac-Arg-NH2 complex show that phosphate bond dissociation is preferred over breakage of the non-covalent bond between ATP and the peptide mimic, which coincidentally agrees with the behaviour of catalysed ATP hydrolysis reaction in solution.
Radboud Repository arrow_drop_down International Journal of Mass SpectrometryArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Mass SpectrometryArticle . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijms.2024.117393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down International Journal of Mass SpectrometryArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Mass SpectrometryArticle . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijms.2024.117393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu