- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Kermeli, Katerina; Ter Weer, Peter Hans; Crijns - Graus, Wina; Worrell, Ernst;Primary aluminium production is a highly energy-intensive and greenhouse gas (GHG)-emitting process responsible for about 1 % of global GHG emissions. In 2009, the two most energy-intensive processes in primary aluminium production, alumina refining and aluminium smelting consumed 3.1 EJ, of which 2 EJ was electricity for aluminium smelting, about 8 % of the electricity use in the global industrial sector. The demand for aluminium is expected to increase significantly over the next decades, continuing the upward trend in energy use and GHGs. The wide implementation of energy efficiency measures can cut down GHG emissions and assist in the transition towards a more sustainable primary aluminium industry. In this study, 22 currently available energy efficiency measures are assessed, and cost-supply curves are constructed to determine the technical and the cost-effective energy and GHG savings potentials. The implementation of all measures was estimated to reduce the 2050 primary energy use by 31 % in alumina refining and by 9 % in primary aluminium production (excluding alumina refining) when compared to a “frozen efficiency” scenario. When compared to a “business-as-usual” (BAU) scenario, the identified energy savings potentials are lower, 12 and 0.9 % for alumina refining and primary aluminium production (excluding alumina refining), respectively. Currently available technologies have the potential to significantly reduce the energy use for alumina refining while in the case of aluminium smelting, if no new technologies become available in the future, the energy and GHG savings potentials will be limited.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9301-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9301-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, NetherlandsPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEPage Kyle; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Shinichiro Fujimori; Wina Crijns-Graus; Fuminori Sano; Katerina Kermeli; B. Fais; D.P. van Vuuren; D.P. van Vuuren; Ernst Worrell; Ruben Bibas;handle: 11311/1061131
The industry sector is a major energy consumer and GHG emitter. Effective climate change mitigation strategies will require a significant reduction of industrial emissions. To better understand the variations in the projected industrial pathways for both baseline and mitigation scenarios, we compare key input and structure assumptions used in energy-models in relation to the modeled sectors' mitigation potential. It is shown that although all models show in the short term similar trends in a baseline scenario, where industrial energy demand increases steadily, after 2050 energy demand spans a wide range across the models (between 203 and 451 EJ/yr). In Non-OECD countries, the sectors energy intensity is projected to decline relatively rapidly but in the 2010–2050 period this is offset by economic growth. The ability to switch to alternative fuels to mitigate GHG emissions differs across models with technologically detailed models being less flexible in switching from fossil fuels to electricity. This highlights the importance of understanding economy-wide mitigation responses and costs and is therefore an area for improvements. By looking at the cement sector in more detail, we show that analyzing each industrial sub-sector separately can improve the interpretation and accuracy of outcomes, and provide insights in the feasibility of GHG abatement.
Energy arrow_drop_down http://dx.doi.org/dx.doi.org/1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down http://dx.doi.org/dx.doi.org/1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Book , Other literature type 2011 Netherlands, United States, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Kermeli, Katerina; Worrell, Ernst; Masanet, Eric;doi: 10.2172/1062106
The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1062106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1062106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 NetherlandsPublisher:MDPI AG Funded by:EC | sEEnergiesEC| sEEnergiesPia Manz; Katerina Kermeli; Urban Persson; Marius Neuwirth; Tobias Fleiter; Wina Crijns-Graus;Energy-intensive industries across the EU-28 release unused heat into the environment. This excess heat can be utilized for district heating systems. However, this is the exception today, and the potential contribution to the decarbonization of district heating is not well quantified. An estimation of excess heat, based on industrial processes, and spatial matching to district heating areas is necessary. We present a georeferenced industrial database with annual production and excess heat potentials at different temperature levels matched with current and possible district heating areas. Our results show a total potential of 960 PJ/a (267 TWh/a) of excess heat when the exhaust gases are cooled down to 25 °C, with 47% of the 1.608 studied industrial sites inside or within a 10 km distance of district heating areas. The calculated potentials reveal that currently 230 PJ/a (64 TWh/a) of excess heat is available for district heating areas, about 17% of today’s demand of buildings for district heating. In the future, widespread and low-temperature district heating areas increase the available excess heat to 258 PJ/a (72 TWh/a) at 55 °C or 679 PJ/a (189 TWh/a) at 25 °C. We show that industrial excess heat can substantially contribute to decarbonize district heating, however, the major share of heat will need to be supplied by renewables.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2021 NetherlandsPublisher:Utrecht University Library Authors: Kermeli, Katerina;doi: 10.33540/722
Despite past energy efficiency improvements and decarbonization efforts, the industrial sector is still responsible for 40% of global energy consumption and more than 43% of global CO2 emissions. It is shown that the role of energy efficiency in combination with increased recycling will be key in reducing industrial energy demand, achieving reductions of approximately one quarter by 2050. But how is the industrial sector represented in most long-term energy models, models widely used for policy assessment and for evaluating different decarbonization pathways? Not in adequate detail, as it is found that very few models capture industrial details while many represent the industrial sector as a whole. But even the more industry detailed energy models could profit by adding knowledge on key areas from bottom-up industry analysis and material flow analysis and improve their projections. Improvements assessed include the energy efficiency and material efficiency options, industry inter-linkages, and change in the approaches used for material demand projections. Results have pointed that i) cost-effective energy efficiency measures do exist, but they are commonly overlooked by models, ii) policies in one sector impact the CO2 emissions in another sector (e.g., the facing out of coal-fired power plants will limit the generation of by-products used for CO2 reduction in the cement industry) and, iii) demand projections can be drastically different when results from material flow analysis are used instead of the simplified and widely used approach of relating historical trends between economic activity and consumption levels.
Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityDoctoral thesis . 2021License: CC BY NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33540/722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityDoctoral thesis . 2021License: CC BY NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33540/722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Denmark, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Katerina Kermeli; Wina Crijns-Graus; Rasmus Magni Johannsen; Brian Vad Mathiesen;AbstractIncreasing the energy efficiency in high energy demand sectors such as industry with a high reliance on coal, oil and natural gas is considered a pivotal step towards reducing greenhouse gas emissions and meeting the Paris Agreement targets. The European Commission published final energy demand projections for industry capturing current policies and market trends up to 2050. This Reference scenario for industry in 2050, however, does not give insights into the extent to which energy efficiency potentials are already implemented, in which sectors further efficiency can be achieved, to what extent or with which technologies. In this paper, the EU Reference scenario is broken down and compared to a Frozen Efficiency scenario with similar GDP developments but without energy efficiency. Through bottom-up analyses, it is found that with energy efficiency technologies alone, this Reference scenario for industry energy demands (10.6 EJ in 2050) cannot be achieved. That means that the EU Reference assumes higher energy efficiency than possible and too high an effect of current policies. In the Frozen Efficiency scenario, the energy demand reaches 14.2 EJ in 2050 due to the GDP development; 22% higher than 2015. Energy efficiency improvements and increased recycling can decrease industrial energy demand by 23% (11.3 EJ in 2050). In order to further reduce the energy demand, our analyses shows that the wide implementation of innovative in combination with electrification or hydrogen technologies can further decrease the 2050 energy demand to 9.7 EJ or 10.3 EJ, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-022-10071-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-022-10071-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal 2008 United States, Netherlands, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Worrell, E.; Kermeli, Katerina; Galitsky, Christina;doi: 10.2172/927882
The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. A variety of waste fuels, including tires, steadily increase their share in fuel use. Between 1970 and 2010, primary physical energy intensity for cement production dropped 1.2% per year from 7.3 MBtu/short ton to 4.5 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 24%, from 610 lb C/ton of cement (0.31 tC/tonne) to 469 lb C/ton cement (0.23 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The share of wet-process plants decreased from 60% in 1970 to about 7% of clinker production in 2010 in the U.S. The remaining plants suggest the existence of a considerable potential, when compared to other industrialized countries. We examined over 50 energy-efficient technologies and measures and estimated energy savings, carbon dioxide emission savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the world with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/927882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/927882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst;The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes into account the implementation of energy efficiency improvement measures. These scenarios cover energy demand in the period 2009-2050 for ten world regions. The reference scenario is based on the International Energy Agency World Energy Outlook (2011 edition) up to 2035 and is extrapolated by Gross Domestic Product projections for the period 2035-2050. According to the reference scenario, the industrial energy use will increase from 105 EJ in 2009 to 185 EJ in 2050 (excluding fuel use as a feedstock). It is estimated that, with the adoption of energy efficient technologies and increased recycling, the growth in industrial energy use in 2050 can be limited to 140 EJ, an annual energy use increase of 0.7 % compared with the 2009 case. The 2050 industrial energy use in the low energy demand scenario is estimated to be 24 % lower than the 2050 energy use in the reference scenario. The results of this study highlight the importance of industrial energy efficiency by providing insights of the energy savings potentials in different regions of the world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9267-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9267-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Denmark, NetherlandsPublisher:Elsevier BV Funded by:EC | SENTINEL, EC | sEEnergiesEC| SENTINEL ,EC| sEEnergiesAuthors: Rasmus Magni Johannsen; Brian Vad Mathiesen; Katerina Kermeli; Wina Crijns-Graus; +1 AuthorsRasmus Magni Johannsen; Brian Vad Mathiesen; Katerina Kermeli; Wina Crijns-Graus; Poul Alberg Østergaard;Industry poses one of the biggest challenges in the renewable energy transition. In this paper, fossil fuels in the European industrial sector are replaced by renewable energy using a novel tool, IndustryPLAN, a planning tool for the assessment of national industrial sectors. In a bottom-up approach, each industry sub-sector is addressed with energy efficiency and fossil fuel replacement measures based on best available and innovative technologies, and in a top-down approach, the fuel and electricity consumption per country is analysed and decarbonised. The results indicate that: 1. Known technologies can decarbonise most of the industrial sector; 2. Costs and efficiencies are improved by energy savings and electrification; 3. Limiting bioenergy consumption is a critical challenge, emphasising the key role of energy savings and electrification, and the alternative of using hydrogen or hydrogen-based electrofuels will make the transition more expensive and induce energy losses. A full transition to renewable energy and a decarbonised industry sector may be possible before 2050, however, this requires that all investments are sustainable from 2030 onwards and that grid electricity is fully decarbonised. This paper presents several pathways toward 100% renewable energy supply in the European industrial sector and discusses the implications of the outlined scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.126687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.126687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 NetherlandsPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEDetlef P. van Vuuren; Detlef P. van Vuuren; Katerina Kermeli; Bas van Ruijven; Bas van Ruijven; Ernst Worrell; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Wina Crijns-Graus;The steel industry is responsible for a large share of the industrial energy consumption and greenhouse gas emissions and several long-term energy models have some representation of this sub-sector. It is found that models, commonly use a flow-based approach for projecting steel demand neglecting that in-use steel stocks serve as a better demand indicator than steel consumption. A stock-based method that uses the historical steel stock results from detailed material flow analysis is developed for making steel demand projections and implemented in the IMAGE Integrated Assessment Model. Large differences between the two approaches arise. For the first half of the 21st century, global steel demand increases with both approaches and at a similar rate to reach 2300 Mt/yr by 2050. For the second half of the 21st century, however, the developments differ drastically. With the stock-based approach, global steel demand decreases by 0.8%/a to reach 1600 Mt/yr, while with the flow-based approach it increases by 0.3%/a to reach 2600 Mt/yr in 2100. Given that steel production levels have a profound contribution to greenhouse gas emissions, using the right approach is crucial. This means that long-term energy models may currently overestimate the industrial emissions in the last half of the century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Kermeli, Katerina; Ter Weer, Peter Hans; Crijns - Graus, Wina; Worrell, Ernst;Primary aluminium production is a highly energy-intensive and greenhouse gas (GHG)-emitting process responsible for about 1 % of global GHG emissions. In 2009, the two most energy-intensive processes in primary aluminium production, alumina refining and aluminium smelting consumed 3.1 EJ, of which 2 EJ was electricity for aluminium smelting, about 8 % of the electricity use in the global industrial sector. The demand for aluminium is expected to increase significantly over the next decades, continuing the upward trend in energy use and GHGs. The wide implementation of energy efficiency measures can cut down GHG emissions and assist in the transition towards a more sustainable primary aluminium industry. In this study, 22 currently available energy efficiency measures are assessed, and cost-supply curves are constructed to determine the technical and the cost-effective energy and GHG savings potentials. The implementation of all measures was estimated to reduce the 2050 primary energy use by 31 % in alumina refining and by 9 % in primary aluminium production (excluding alumina refining) when compared to a “frozen efficiency” scenario. When compared to a “business-as-usual” (BAU) scenario, the identified energy savings potentials are lower, 12 and 0.9 % for alumina refining and primary aluminium production (excluding alumina refining), respectively. Currently available technologies have the potential to significantly reduce the energy use for alumina refining while in the case of aluminium smelting, if no new technologies become available in the future, the energy and GHG savings potentials will be limited.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9301-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9301-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, NetherlandsPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEPage Kyle; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Shinichiro Fujimori; Wina Crijns-Graus; Fuminori Sano; Katerina Kermeli; B. Fais; D.P. van Vuuren; D.P. van Vuuren; Ernst Worrell; Ruben Bibas;handle: 11311/1061131
The industry sector is a major energy consumer and GHG emitter. Effective climate change mitigation strategies will require a significant reduction of industrial emissions. To better understand the variations in the projected industrial pathways for both baseline and mitigation scenarios, we compare key input and structure assumptions used in energy-models in relation to the modeled sectors' mitigation potential. It is shown that although all models show in the short term similar trends in a baseline scenario, where industrial energy demand increases steadily, after 2050 energy demand spans a wide range across the models (between 203 and 451 EJ/yr). In Non-OECD countries, the sectors energy intensity is projected to decline relatively rapidly but in the 2010–2050 period this is offset by economic growth. The ability to switch to alternative fuels to mitigate GHG emissions differs across models with technologically detailed models being less flexible in switching from fossil fuels to electricity. This highlights the importance of understanding economy-wide mitigation responses and costs and is therefore an area for improvements. By looking at the cement sector in more detail, we show that analyzing each industrial sub-sector separately can improve the interpretation and accuracy of outcomes, and provide insights in the feasibility of GHG abatement.
Energy arrow_drop_down http://dx.doi.org/dx.doi.org/1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down http://dx.doi.org/dx.doi.org/1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Book , Other literature type 2011 Netherlands, United States, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Kermeli, Katerina; Worrell, Ernst; Masanet, Eric;doi: 10.2172/1062106
The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1062106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1062106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 NetherlandsPublisher:MDPI AG Funded by:EC | sEEnergiesEC| sEEnergiesPia Manz; Katerina Kermeli; Urban Persson; Marius Neuwirth; Tobias Fleiter; Wina Crijns-Graus;Energy-intensive industries across the EU-28 release unused heat into the environment. This excess heat can be utilized for district heating systems. However, this is the exception today, and the potential contribution to the decarbonization of district heating is not well quantified. An estimation of excess heat, based on industrial processes, and spatial matching to district heating areas is necessary. We present a georeferenced industrial database with annual production and excess heat potentials at different temperature levels matched with current and possible district heating areas. Our results show a total potential of 960 PJ/a (267 TWh/a) of excess heat when the exhaust gases are cooled down to 25 °C, with 47% of the 1.608 studied industrial sites inside or within a 10 km distance of district heating areas. The calculated potentials reveal that currently 230 PJ/a (64 TWh/a) of excess heat is available for district heating areas, about 17% of today’s demand of buildings for district heating. In the future, widespread and low-temperature district heating areas increase the available excess heat to 258 PJ/a (72 TWh/a) at 55 °C or 679 PJ/a (189 TWh/a) at 25 °C. We show that industrial excess heat can substantially contribute to decarbonize district heating, however, the major share of heat will need to be supplied by renewables.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Multidisciplinary Digital Publishing InstituteSustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/3/1439/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2021 NetherlandsPublisher:Utrecht University Library Authors: Kermeli, Katerina;doi: 10.33540/722
Despite past energy efficiency improvements and decarbonization efforts, the industrial sector is still responsible for 40% of global energy consumption and more than 43% of global CO2 emissions. It is shown that the role of energy efficiency in combination with increased recycling will be key in reducing industrial energy demand, achieving reductions of approximately one quarter by 2050. But how is the industrial sector represented in most long-term energy models, models widely used for policy assessment and for evaluating different decarbonization pathways? Not in adequate detail, as it is found that very few models capture industrial details while many represent the industrial sector as a whole. But even the more industry detailed energy models could profit by adding knowledge on key areas from bottom-up industry analysis and material flow analysis and improve their projections. Improvements assessed include the energy efficiency and material efficiency options, industry inter-linkages, and change in the approaches used for material demand projections. Results have pointed that i) cost-effective energy efficiency measures do exist, but they are commonly overlooked by models, ii) policies in one sector impact the CO2 emissions in another sector (e.g., the facing out of coal-fired power plants will limit the generation of by-products used for CO2 reduction in the cement industry) and, iii) demand projections can be drastically different when results from material flow analysis are used instead of the simplified and widely used approach of relating historical trends between economic activity and consumption levels.
Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityDoctoral thesis . 2021License: CC BY NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33540/722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityDoctoral thesis . 2021License: CC BY NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33540/722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Denmark, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | sEEnergiesEC| sEEnergiesAuthors: Katerina Kermeli; Wina Crijns-Graus; Rasmus Magni Johannsen; Brian Vad Mathiesen;AbstractIncreasing the energy efficiency in high energy demand sectors such as industry with a high reliance on coal, oil and natural gas is considered a pivotal step towards reducing greenhouse gas emissions and meeting the Paris Agreement targets. The European Commission published final energy demand projections for industry capturing current policies and market trends up to 2050. This Reference scenario for industry in 2050, however, does not give insights into the extent to which energy efficiency potentials are already implemented, in which sectors further efficiency can be achieved, to what extent or with which technologies. In this paper, the EU Reference scenario is broken down and compared to a Frozen Efficiency scenario with similar GDP developments but without energy efficiency. Through bottom-up analyses, it is found that with energy efficiency technologies alone, this Reference scenario for industry energy demands (10.6 EJ in 2050) cannot be achieved. That means that the EU Reference assumes higher energy efficiency than possible and too high an effect of current policies. In the Frozen Efficiency scenario, the energy demand reaches 14.2 EJ in 2050 due to the GDP development; 22% higher than 2015. Energy efficiency improvements and increased recycling can decrease industrial energy demand by 23% (11.3 EJ in 2050). In order to further reduce the energy demand, our analyses shows that the wide implementation of innovative in combination with electrification or hydrogen technologies can further decrease the 2050 energy demand to 9.7 EJ or 10.3 EJ, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-022-10071-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-022-10071-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal 2008 United States, Netherlands, United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Worrell, E.; Kermeli, Katerina; Galitsky, Christina;doi: 10.2172/927882
The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. A variety of waste fuels, including tires, steadily increase their share in fuel use. Between 1970 and 2010, primary physical energy intensity for cement production dropped 1.2% per year from 7.3 MBtu/short ton to 4.5 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 24%, from 610 lb C/ton of cement (0.31 tC/tonne) to 469 lb C/ton cement (0.23 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The share of wet-process plants decreased from 60% in 1970 to about 7% of clinker production in 2010 in the U.S. The remaining plants suggest the existence of a considerable potential, when compared to other industrialized countries. We examined over 50 energy-efficient technologies and measures and estimated energy savings, carbon dioxide emission savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the world with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/927882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/927882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst;The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes into account the implementation of energy efficiency improvement measures. These scenarios cover energy demand in the period 2009-2050 for ten world regions. The reference scenario is based on the International Energy Agency World Energy Outlook (2011 edition) up to 2035 and is extrapolated by Gross Domestic Product projections for the period 2035-2050. According to the reference scenario, the industrial energy use will increase from 105 EJ in 2009 to 185 EJ in 2050 (excluding fuel use as a feedstock). It is estimated that, with the adoption of energy efficient technologies and increased recycling, the growth in industrial energy use in 2050 can be limited to 140 EJ, an annual energy use increase of 0.7 % compared with the 2009 case. The 2050 industrial energy use in the low energy demand scenario is estimated to be 24 % lower than the 2050 energy use in the reference scenario. The results of this study highlight the importance of industrial energy efficiency by providing insights of the energy savings potentials in different regions of the world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9267-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-014-9267-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Denmark, NetherlandsPublisher:Elsevier BV Funded by:EC | SENTINEL, EC | sEEnergiesEC| SENTINEL ,EC| sEEnergiesAuthors: Rasmus Magni Johannsen; Brian Vad Mathiesen; Katerina Kermeli; Wina Crijns-Graus; +1 AuthorsRasmus Magni Johannsen; Brian Vad Mathiesen; Katerina Kermeli; Wina Crijns-Graus; Poul Alberg Østergaard;Industry poses one of the biggest challenges in the renewable energy transition. In this paper, fossil fuels in the European industrial sector are replaced by renewable energy using a novel tool, IndustryPLAN, a planning tool for the assessment of national industrial sectors. In a bottom-up approach, each industry sub-sector is addressed with energy efficiency and fossil fuel replacement measures based on best available and innovative technologies, and in a top-down approach, the fuel and electricity consumption per country is analysed and decarbonised. The results indicate that: 1. Known technologies can decarbonise most of the industrial sector; 2. Costs and efficiencies are improved by energy savings and electrification; 3. Limiting bioenergy consumption is a critical challenge, emphasising the key role of energy savings and electrification, and the alternative of using hydrogen or hydrogen-based electrofuels will make the transition more expensive and induce energy losses. A full transition to renewable energy and a decarbonised industry sector may be possible before 2050, however, this requires that all investments are sustainable from 2030 onwards and that grid electricity is fully decarbonised. This paper presents several pathways toward 100% renewable energy supply in the European industrial sector and discusses the implications of the outlined scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.126687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.126687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 NetherlandsPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEDetlef P. van Vuuren; Detlef P. van Vuuren; Katerina Kermeli; Bas van Ruijven; Bas van Ruijven; Ernst Worrell; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Wina Crijns-Graus;The steel industry is responsible for a large share of the industrial energy consumption and greenhouse gas emissions and several long-term energy models have some representation of this sub-sector. It is found that models, commonly use a flow-based approach for projecting steel demand neglecting that in-use steel stocks serve as a better demand indicator than steel consumption. A stock-based method that uses the historical steel stock results from detailed material flow analysis is developed for making steel demand projections and implemented in the IMAGE Integrated Assessment Model. Large differences between the two approaches arise. For the first half of the 21st century, global steel demand increases with both approaches and at a similar rate to reach 2300 Mt/yr by 2050. For the second half of the 21st century, however, the developments differ drastically. With the stock-based approach, global steel demand decreases by 0.8%/a to reach 1600 Mt/yr, while with the flow-based approach it increases by 0.3%/a to reach 2600 Mt/yr in 2100. Given that steel production levels have a profound contribution to greenhouse gas emissions, using the right approach is crucial. This means that long-term energy models may currently overestimate the industrial emissions in the last half of the century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu