- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1FCT| LA 1Parmar, Kim; Keith, Aidan M.; Rowe, Rebecca L.; Sohi, Saran P.; Moeckel, Claudia; Pereira, M. Gloria; McNamara, Niall P.;Second-generation bioenergy crops, including Short Rotation Forestry (SRF), have the potential to contribute to greenhouse gas (GHG) emissions savings through reduced soil GHG fluxes and greater soil C sequestration. If we are to predict the magnitude of any such GHG benefits a better understanding is needed of the effect of land use change (LUC) on the underlying factors which regulate GHG fluxes. Under controlled conditions we measured soil GHG flux potentials, and associated soil physico-chemical and microbial community characteristics for a range of LUC transitions from grassland land uses to SRF. These involved ten broadleaved and seven coniferous transitions. Differences in GHGs and microbial community composition assessed by phospholipid fatty acids (PLFA) profiles were detected between land uses, with distinctions between broadleaved and coniferous tree species. Compared to grassland controls, CO2 flux, total PLFAs and fungal PLFAs (on a mass of C basis), were lower under coniferous species but unaffected under broadleaved tree species. There were no significant differences in N2O and CH4 flux rates between grassland, broadleaved and coniferous land uses, though both CH4 and N2O tended to have greater uptake under broadleaved species in the upper soil layer. Effect sizes of CO2 flux across LUC transitions were positively related with effect sizes of soil pH, total PLFA and fungal PLFA. These relationships between fluxes and microbial community suggest that LUC to SRF may drive change in soil respiration by altering the composition of the soil microbial community. These findings support that LUC to SRF for bioenergy can contribute towards C savings and GHG mitigation.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Wiley Amanda J. Holder; Rebecca Rowe; Niall P. McNamara; Iain S. Donnison; Jon P. McCalmont;AbstractWhen considering the large‐scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub‐basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run‐off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub‐basin and scenario revealed surface run‐off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between −5% and +5% change (compared to baseline) in the majority of sub‐basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run‐off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17948Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 74 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17948Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Wiley Funded by:UKRI | Measurement and Analysis ...UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE)Amanda J. Holder; Jon P. McCalmont; Rebecca Rowe; Niall P. McNamara; Dafydd Elias; Iain S. Donnison;AbstractAn increase in renewable energy and the planting of perennial bioenergy crops is expected in order to meet global greenhouse gas (GHG) targets. Nitrous oxide (N2O) is a potent greenhouse gas, and this paper addresses a knowledge gap concerning soil N2O emissions over the possible “hot spot” of land use conversion from established pasture to the biofuel crop Miscanthus. The work aims to quantify the impacts of this land use change on N2O fluxes using three different cultivation methods. Three replicates of four treatments were established: Miscanthus x giganteus (Mxg) planted without tillage; Mxg planted with light tillage; a novel seed‐based Miscanthus hybrid planted with light tillage under bio‐degradable mulch film; and a control of uncultivated established grass pasture with sheep grazing. Soil N2O fluxes were recorded every 2 weeks using static chambers starting from preconversion in April 2016 and continuing until the end of October 2017. Monthly soil samples were also taken and analysed for nitrate and ammonium. There was no significant difference in N2O emissions between the different cultivation methods. However, in comparison with the uncultivated pasture, N2O emissions from the cultivated Miscanthus plots were 550%–819% higher in the first year (April to December 2016) and 469%–485% higher in the second year (January to October 2017). When added to an estimated carbon cost for production over a 10 year crop lifetime (including crop management, harvest, and transportation), the measured N2O conversion cost of 4.13 Mg CO2‐eq./ha represents a 44% increase in emission compared to the base case. This paper clearly shows the need to incorporate N2O fluxes during Miscanthus establishment into assessments of GHG balances and life cycle analysis and provides vital knowledge needed for this process. This work therefore also helps to support policy decisions regarding the costs and benefits of land use change to Miscanthus.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17946Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17946Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Wiley Funded by:UKRI | Measurement and Analysis ...UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE)Authors: Ross Morrison; Rebecca L Rowe; Hollie M. Cooper; Niall P. McNamara;doi: 10.1111/gcbb.12608
AbstractEnergy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from −147 ± 70 to −502 ± 84 g CO2‐C m−2 year−1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was −87 ± 303 g CO2‐C m−2 for the complete production cycle after accounting for C export at harvest (1,183 g C m−2), and was approximately CO2‐C neutral (−21 g CO2‐C m−2 year−1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 24 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f...UKRI| Perennial Biomass Crops for Greenhouse Gas RemovalRebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 27 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1, UKRI | Sustainable Use of Natura..., UKRI | Robots Under Ice: Gatheri...FCT| LA 1 ,UKRI| Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) ,UKRI| Robots Under Ice: Gathering Ice Hazard Data from BelowAlice Fitch; Rebecca L. Rowe; Niall P. McNamara; Cahyo Prayogo; Rizky Maulana Ishaq; Rizki Dwi Prasetyo; Zak Mitchell; Simon Oakley; Laurence Jones;doi: 10.3390/su14053019
In tropical regions, land-use pressures between natural forest, commercial tree plantations, and agricultural land for rural communities are widespread. One option is to increase the functionality of commercial plantations by allowing agroforestry within them by rural communities. Such land-sharing options could address wider societal and environmental issues and reduce pressure on natural forest. To investigate the trade-offs involved, we used InVEST to model the ecosystem services provided by growing coffee under commercial pine plantations in Indonesia against other land-use options. Pine–coffee agroforestry provided worse supporting and regulating services (carbon, sediment and nitrogen retention, catchment runoff) than natural forest; however, it provided greater provisioning services (product yield) directly to smallholders. Converting pine monoculture into pine-coffee agroforestry led to increases in all ecosystem services, although there was an increased risk to water quality. Compared with coffee and root crop monocultures, pine–coffee agroforestry provided higher levels of supporting and regulating services; however, product yields were lower. Thus, opening up pine plantations for agroforestry realises additional income-generating opportunities for rural communities, provides wider ecosystem service benefits, and reduces pressure for land-use change. Lower smallholder yields could be addressed through the management of shade levels or through Payments for Ecosystem Services schemes.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Wiley Funded by:UKRI | Optimising and sustaining..., EC | FACCE SURPLUS, UKRI | Measurement and Analysis ...UKRI| Optimising and sustaining biomass yield ,EC| FACCE SURPLUS ,UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE)Amanda J. Holder; John Clifton‐Brown; Rebecca Rowe; Paul Robson; Dafydd Elias; Marta Dondini; Niall P. McNamara; Iain S. Donnison; Jon P. McCalmont;AbstractSoil organic carbon (SOC) is an important carbon pool susceptible to land‐use change (LUC). There are concerns that converting grasslands into the C4 bioenergy crop Miscanthus (to meet demands for renewable energy) could negatively impact SOC, resulting in reductions of greenhouse gas mitigation benefits gained from using Miscanthus as a fuel. This work addresses these concerns by sampling soils (0–30 cm) from a site 12 years (T12) after conversion from marginal agricultural grassland into Miscanthus x giganteus and four other novel Miscanthus hybrids. Soil samples were analysed for changes in below‐ground biomass, SOC and Miscanthus contribution to SOC (using a 13C natural abundance approach). Findings are compared to ECOSSE soil carbon model results (run for a LUC from grassland to Miscanthus scenario and continued grassland counterfactual), and wider implications are considered in the context of life cycle assessments based on the heating value of the dry matter (DM) feedstock. The mean T12 SOC stock at the site was 8 (±1 standard error) Mg C/ha lower than baseline time zero stocks (T0), with assessment of the five individual hybrids showing that while all had lower SOC stock than at T0 the difference was only significant for a single hybrid. Over the longer term, new Miscanthus C4 carbon replaces pre‐existing C3 carbon, though not at a high enough rate to completely offset losses by the end of year 12. At the end of simulated crop lifetime (15 years), the difference in SOC stocks between the two scenarios was 4 Mg C/ha (5 g CO2‐eq/MJ). Including modelled LUC‐induced SOC loss, along with carbon costs relating to soil nitrous oxide emissions, doubled the greenhouse gas intensity of Miscanthus to give a total global warming potential of 10 g CO2‐eq/MJ (180 kg CO2‐eq/Mg DM).
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/13226Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 14 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/13226Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Wiley Funded by:UKRI | Engaging the bioenergy se..., UKRI | Soils Research to deliver..., UKRI | Measurement and Analysis ... +2 projectsUKRI| Engaging the bioenergy sector to improve NERC's capability to address soil sustainability challenges of land-based bioenergy cultivation ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE) ,EC| POPFULL ,FCT| LA 1Jeanette Whitaker; John L. Field; Carl J. Bernacchi; Carlos E. P. Cerri; Reinhart Ceulemans; Christian A. Davies; Evan H. DeLucia; Iain S. Donnison; Jon P. McCalmont; Keith Paustian; Rebecca L. Rowe; Pete Smith; Patricia Thornley; Niall P. McNamara;AbstractPerennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significantGHGsavings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreasedGHGemissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from theUK,EUand internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycleGHGmitigation from bioenergy relative to conventional energy sources. We conclude that theGHGbalance of perennial bioenergy crop cultivation will often be favourable, with maximumGHGsavings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10028Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 21 Powered bymore_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10028Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Rebecca L. Rowe; Aidan M. Keith; Dafydd Elias; Marta Dondini; Pete Smith; Jonathan Oxley; Niall P. McNamara;doi: 10.1111/gcbb.12311
handle: 2164/7774
AbstractIn the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha−1 and 26.83 ± 8.08 Mg C ha−1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/7774Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 135 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/7774Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Supergen Bioenergy Hub 20...UKRI| Supergen Bioenergy Hub 2018Andrew Welfle; Alberto Almena; Muhammad Naveed Arshad; Scott W. Banks; Isabela Butnar; Katie Chong; Seth Cooper; Helen Daly; Samira García Freites; Fatih Güleç; Christopher Hardacre; Robert A. Holland; Lan Lan; Chai Siah Lee; Peter K. J. Robertson; Rebecca Rowe; A. Shepherd; Nathan Skillen; Silvia Tedesco; Patricia Thornley; Pedro Verdía; Ian Watson; Orla Williams; Mirjam Röder;La bioénergie est largement incluse dans les stratégies énergétiques pour son potentiel d'atténuation des GES. Les technologies de la bioénergie devront probablement être déployées à grande échelle pour atteindre les objectifs de décarbonation et, par conséquent, la biomasse devra être de plus en plus cultivée/mobilisée. Les risques de durabilité associés à la bioénergie peuvent s'intensifier avec l'augmentation du déploiement et lorsque les matières premières proviennent du commerce international. Cette recherche applique le modèle d'indicateur de durabilité de la bioéconomie (BSIM) pour cartographier et analyser la performance de la bioénergie sur 126 questions de durabilité, en évaluant 16 études de cas de bioénergie qui reflètent l'étendue des ressources de biomasse, des technologies, des vecteurs énergétiques et des bioproduits. La recherche trouve des tendances communes en matière de performance de durabilité dans tous les projets qui peuvent éclairer la politique et la prise de décision en matière de bioénergie. Les avantages potentiels en matière de durabilité sont identifiés pour les personnes (emplois, compétences, revenus, accès à l'énergie) ; pour le développement (économie, énergie, utilisation des terres) ; pour les systèmes naturels (sol, métaux lourds) ; et pour le changement climatique (émissions, carburants). En outre, des tendances cohérentes des risques de durabilité où une attention particulière est nécessaire pour assurer la viabilité des projets de bioénergie, y compris pour les infrastructures, la mobilisation des matières premières, la techno-économie et les stocks de carbone. L'atténuation des émissions peut être un objectif principal pour la bioénergie, cette recherche révèle que les projets de bioénergie peuvent offrir des avantages potentiels bien au-delà des émissions - il existe un argument en faveur du soutien de projets basés sur les services écosystémiques et/ou la stimulation économique qu'ils peuvent fournir. Compte tenu également de la vaste dynamique et des caractéristiques des projets de bioénergie, une approche rigide de l'évaluation de la durabilité peut être incompatible. L'octroi de « crédits » sur un plus large éventail d'indicateurs de durabilité, en plus d'exiger des performances minimales dans des domaines clés, peut être plus efficace pour assurer la durabilité de la bioénergie. La bioenergía está ampliamente incluida en las estrategias energéticas por su potencial de mitigación de GEI. Es probable que las tecnologías de bioenergía tengan que implementarse a escala para cumplir con los objetivos de descarbonización y, en consecuencia, la biomasa tendrá que crecer/movilizarse cada vez más. Los riesgos de sostenibilidad asociados con la bioenergía pueden intensificarse con el aumento del despliegue y donde las materias primas se obtienen a través del comercio internacional. Esta investigación aplica el Modelo de Indicadores de Sostenibilidad de la Bioeconomía (BSIM) para mapear y analizar el rendimiento de la bioenergía en 126 temas de sostenibilidad, evaluando 16 estudios de casos de bioenergía que reflejan la amplitud de los recursos de biomasa, las tecnologías, los vectores energéticos y los bioproductos. La investigación encuentra tendencias comunes en el desempeño de la sostenibilidad en todos los proyectos que pueden informar la política de bioenergía y la toma de decisiones. Se identifican posibles beneficios de sostenibilidad para las personas (empleos, habilidades, ingresos, acceso a la energía); para el desarrollo (economía, energía, utilización de la tierra); para los sistemas naturales (suelo, metales pesados) y para el cambio climático (emisiones, combustibles). Además, las tendencias consistentes de los riesgos de sostenibilidad donde se requiere un enfoque para garantizar la viabilidad de los proyectos de bioenergía, incluida la infraestructura, la movilización de materias primas, la tecnoeconomía y las reservas de carbono. La mitigación de emisiones puede ser un objetivo principal para la bioenergía, esta investigación encuentra que los proyectos de bioenergía pueden proporcionar beneficios potenciales mucho más allá de las emisiones: existe un argumento para apoyar proyectos basados en los servicios ecosistémicos y/o la estimulación económica que pueden brindar. También dada la amplia dinámica y características de los proyectos de bioenergía, un enfoque rígido de evaluación de la sostenibilidad puede ser incompatible. La concesión de "créditos" a través de una gama más amplia de indicadores de sostenibilidad, además de requerir rendimientos mínimos en áreas clave, puede ser más eficaz para garantizar la sostenibilidad de la bioenergía. Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding 'credit' across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability. يتم تضمين الطاقة الحيوية على نطاق واسع في استراتيجيات الطاقة لإمكانات التخفيف من غازات الدفيئة. من المرجح أن يتم نشر تقنيات الطاقة الحيوية على نطاق واسع لتحقيق أهداف إزالة الكربون، وبالتالي سيتعين زيادة نمو/تعبئة الكتلة الحيوية. قد تزداد مخاطر الاستدامة المرتبطة بالطاقة الحيوية مع زيادة الانتشار وحيث يتم الحصول على المواد الأولية من خلال التجارة الدولية. يطبق هذا البحث نموذج مؤشر استدامة الاقتصاد الحيوي (BSIM) لرسم وتحليل أداء الطاقة الحيوية عبر 126 قضية استدامة، وتقييم 16 دراسة حالة للطاقة الحيوية تعكس اتساع موارد الكتلة الحيوية والتقنيات وناقلات الطاقة والمنتجات الحيوية. وجد البحث اتجاهات مشتركة في أداء الاستدامة عبر المشاريع التي يمكن أن تسترشد بها سياسة الطاقة الحيوية وصنع القرار. يتم تحديد فوائد الاستدامة المحتملة للناس (الوظائف والمهارات والدخل والوصول إلى الطاقة) ؛ للتنمية (الاقتصاد والطاقة واستخدام الأراضي) ؛ للنظم الطبيعية (التربة والمعادن الثقيلة)، و ؛ لتغير المناخ (الانبعاثات والوقود). أيضًا، الاتجاهات المتسقة لمخاطر الاستدامة حيث يكون التركيز مطلوبًا لضمان استمرارية مشاريع الطاقة الحيوية، بما في ذلك البنية التحتية وتعبئة المواد الوسيطة والاقتصاد التقني ومخزونات الكربون. قد يكون تخفيف الانبعاثات هدفًا أساسيًا للطاقة الحيوية، ويجد هذا البحث أن مشاريع الطاقة الحيوية يمكن أن توفر فوائد محتملة تتجاوز الانبعاثات - هناك حجة لدعم المشاريع القائمة على خدمات النظام الإيكولوجي و/أو التحفيز الاقتصادي الذي قد تقدمه. أيضًا نظرًا للديناميكيات والخصائص الواسعة لمشاريع الطاقة الحيوية، قد يكون النهج الصارم لتقييم الاستدامة غير متوافق. قد يكون منح "الائتمان" عبر مجموعة أوسع من مؤشرات الاستدامة بالإضافة إلى طلب الحد الأدنى من الأداء في المجالات الرئيسية أكثر فعالية في ضمان استدامة الطاقة الحيوية.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1FCT| LA 1Parmar, Kim; Keith, Aidan M.; Rowe, Rebecca L.; Sohi, Saran P.; Moeckel, Claudia; Pereira, M. Gloria; McNamara, Niall P.;Second-generation bioenergy crops, including Short Rotation Forestry (SRF), have the potential to contribute to greenhouse gas (GHG) emissions savings through reduced soil GHG fluxes and greater soil C sequestration. If we are to predict the magnitude of any such GHG benefits a better understanding is needed of the effect of land use change (LUC) on the underlying factors which regulate GHG fluxes. Under controlled conditions we measured soil GHG flux potentials, and associated soil physico-chemical and microbial community characteristics for a range of LUC transitions from grassland land uses to SRF. These involved ten broadleaved and seven coniferous transitions. Differences in GHGs and microbial community composition assessed by phospholipid fatty acids (PLFA) profiles were detected between land uses, with distinctions between broadleaved and coniferous tree species. Compared to grassland controls, CO2 flux, total PLFAs and fungal PLFAs (on a mass of C basis), were lower under coniferous species but unaffected under broadleaved tree species. There were no significant differences in N2O and CH4 flux rates between grassland, broadleaved and coniferous land uses, though both CH4 and N2O tended to have greater uptake under broadleaved species in the upper soil layer. Effect sizes of CO2 flux across LUC transitions were positively related with effect sizes of soil pH, total PLFA and fungal PLFA. These relationships between fluxes and microbial community suggest that LUC to SRF may drive change in soil respiration by altering the composition of the soil microbial community. These findings support that LUC to SRF for bioenergy can contribute towards C savings and GHG mitigation.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 28 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Wiley Amanda J. Holder; Rebecca Rowe; Niall P. McNamara; Iain S. Donnison; Jon P. McCalmont;AbstractWhen considering the large‐scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub‐basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run‐off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub‐basin and scenario revealed surface run‐off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between −5% and +5% change (compared to baseline) in the majority of sub‐basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run‐off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17948Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 74 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17948Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Wiley Funded by:UKRI | Measurement and Analysis ...UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE)Amanda J. Holder; Jon P. McCalmont; Rebecca Rowe; Niall P. McNamara; Dafydd Elias; Iain S. Donnison;AbstractAn increase in renewable energy and the planting of perennial bioenergy crops is expected in order to meet global greenhouse gas (GHG) targets. Nitrous oxide (N2O) is a potent greenhouse gas, and this paper addresses a knowledge gap concerning soil N2O emissions over the possible “hot spot” of land use conversion from established pasture to the biofuel crop Miscanthus. The work aims to quantify the impacts of this land use change on N2O fluxes using three different cultivation methods. Three replicates of four treatments were established: Miscanthus x giganteus (Mxg) planted without tillage; Mxg planted with light tillage; a novel seed‐based Miscanthus hybrid planted with light tillage under bio‐degradable mulch film; and a control of uncultivated established grass pasture with sheep grazing. Soil N2O fluxes were recorded every 2 weeks using static chambers starting from preconversion in April 2016 and continuing until the end of October 2017. Monthly soil samples were also taken and analysed for nitrate and ammonium. There was no significant difference in N2O emissions between the different cultivation methods. However, in comparison with the uncultivated pasture, N2O emissions from the cultivated Miscanthus plots were 550%–819% higher in the first year (April to December 2016) and 469%–485% higher in the second year (January to October 2017). When added to an estimated carbon cost for production over a 10 year crop lifetime (including crop management, harvest, and transportation), the measured N2O conversion cost of 4.13 Mg CO2‐eq./ha represents a 44% increase in emission compared to the base case. This paper clearly shows the need to incorporate N2O fluxes during Miscanthus establishment into assessments of GHG balances and life cycle analysis and provides vital knowledge needed for this process. This work therefore also helps to support policy decisions regarding the costs and benefits of land use change to Miscanthus.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17946Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/17946Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Wiley Funded by:UKRI | Measurement and Analysis ...UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE)Authors: Ross Morrison; Rebecca L Rowe; Hollie M. Cooper; Niall P. McNamara;doi: 10.1111/gcbb.12608
AbstractEnergy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from −147 ± 70 to −502 ± 84 g CO2‐C m−2 year−1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was −87 ± 303 g CO2‐C m−2 for the complete production cycle after accounting for C export at harvest (1,183 g C m−2), and was approximately CO2‐C neutral (−21 g CO2‐C m−2 year−1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 24 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f...UKRI| Perennial Biomass Crops for Greenhouse Gas RemovalRebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 27 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1, UKRI | Sustainable Use of Natura..., UKRI | Robots Under Ice: Gatheri...FCT| LA 1 ,UKRI| Sustainable Use of Natural Resources to Improve Human Health and Support Economic Development (SUNRISE) ,UKRI| Robots Under Ice: Gathering Ice Hazard Data from BelowAlice Fitch; Rebecca L. Rowe; Niall P. McNamara; Cahyo Prayogo; Rizky Maulana Ishaq; Rizki Dwi Prasetyo; Zak Mitchell; Simon Oakley; Laurence Jones;doi: 10.3390/su14053019
In tropical regions, land-use pressures between natural forest, commercial tree plantations, and agricultural land for rural communities are widespread. One option is to increase the functionality of commercial plantations by allowing agroforestry within them by rural communities. Such land-sharing options could address wider societal and environmental issues and reduce pressure on natural forest. To investigate the trade-offs involved, we used InVEST to model the ecosystem services provided by growing coffee under commercial pine plantations in Indonesia against other land-use options. Pine–coffee agroforestry provided worse supporting and regulating services (carbon, sediment and nitrogen retention, catchment runoff) than natural forest; however, it provided greater provisioning services (product yield) directly to smallholders. Converting pine monoculture into pine-coffee agroforestry led to increases in all ecosystem services, although there was an increased risk to water quality. Compared with coffee and root crop monocultures, pine–coffee agroforestry provided higher levels of supporting and regulating services; however, product yields were lower. Thus, opening up pine plantations for agroforestry realises additional income-generating opportunities for rural communities, provides wider ecosystem service benefits, and reduces pressure for land-use change. Lower smallholder yields could be addressed through the management of shade levels or through Payments for Ecosystem Services schemes.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14053019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Wiley Funded by:UKRI | Optimising and sustaining..., EC | FACCE SURPLUS, UKRI | Measurement and Analysis ...UKRI| Optimising and sustaining biomass yield ,EC| FACCE SURPLUS ,UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE)Amanda J. Holder; John Clifton‐Brown; Rebecca Rowe; Paul Robson; Dafydd Elias; Marta Dondini; Niall P. McNamara; Iain S. Donnison; Jon P. McCalmont;AbstractSoil organic carbon (SOC) is an important carbon pool susceptible to land‐use change (LUC). There are concerns that converting grasslands into the C4 bioenergy crop Miscanthus (to meet demands for renewable energy) could negatively impact SOC, resulting in reductions of greenhouse gas mitigation benefits gained from using Miscanthus as a fuel. This work addresses these concerns by sampling soils (0–30 cm) from a site 12 years (T12) after conversion from marginal agricultural grassland into Miscanthus x giganteus and four other novel Miscanthus hybrids. Soil samples were analysed for changes in below‐ground biomass, SOC and Miscanthus contribution to SOC (using a 13C natural abundance approach). Findings are compared to ECOSSE soil carbon model results (run for a LUC from grassland to Miscanthus scenario and continued grassland counterfactual), and wider implications are considered in the context of life cycle assessments based on the heating value of the dry matter (DM) feedstock. The mean T12 SOC stock at the site was 8 (±1 standard error) Mg C/ha lower than baseline time zero stocks (T0), with assessment of the five individual hybrids showing that while all had lower SOC stock than at T0 the difference was only significant for a single hybrid. Over the longer term, new Miscanthus C4 carbon replaces pre‐existing C3 carbon, though not at a high enough rate to completely offset losses by the end of year 12. At the end of simulated crop lifetime (15 years), the difference in SOC stocks between the two scenarios was 4 Mg C/ha (5 g CO2‐eq/MJ). Including modelled LUC‐induced SOC loss, along with carbon costs relating to soil nitrous oxide emissions, doubled the greenhouse gas intensity of Miscanthus to give a total global warming potential of 10 g CO2‐eq/MJ (180 kg CO2‐eq/Mg DM).
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/13226Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 14 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/2164/13226Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Wiley Funded by:UKRI | Engaging the bioenergy se..., UKRI | Soils Research to deliver..., UKRI | Measurement and Analysis ... +2 projectsUKRI| Engaging the bioenergy sector to improve NERC's capability to address soil sustainability challenges of land-based bioenergy cultivation ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Biomass Value Chain Modelling Environment (MAGLUE) ,EC| POPFULL ,FCT| LA 1Jeanette Whitaker; John L. Field; Carl J. Bernacchi; Carlos E. P. Cerri; Reinhart Ceulemans; Christian A. Davies; Evan H. DeLucia; Iain S. Donnison; Jon P. McCalmont; Keith Paustian; Rebecca L. Rowe; Pete Smith; Patricia Thornley; Niall P. McNamara;AbstractPerennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significantGHGsavings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreasedGHGemissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from theUK,EUand internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycleGHGmitigation from bioenergy relative to conventional energy sources. We conclude that theGHGbalance of perennial bioenergy crop cultivation will often be favourable, with maximumGHGsavings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10028Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 21 Powered bymore_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10028Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley Rebecca L. Rowe; Aidan M. Keith; Dafydd Elias; Marta Dondini; Pete Smith; Jonathan Oxley; Niall P. McNamara;doi: 10.1111/gcbb.12311
handle: 2164/7774
AbstractIn the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha−1 and 26.83 ± 8.08 Mg C ha−1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/7774Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 135 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/7774Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Supergen Bioenergy Hub 20...UKRI| Supergen Bioenergy Hub 2018Andrew Welfle; Alberto Almena; Muhammad Naveed Arshad; Scott W. Banks; Isabela Butnar; Katie Chong; Seth Cooper; Helen Daly; Samira García Freites; Fatih Güleç; Christopher Hardacre; Robert A. Holland; Lan Lan; Chai Siah Lee; Peter K. J. Robertson; Rebecca Rowe; A. Shepherd; Nathan Skillen; Silvia Tedesco; Patricia Thornley; Pedro Verdía; Ian Watson; Orla Williams; Mirjam Röder;La bioénergie est largement incluse dans les stratégies énergétiques pour son potentiel d'atténuation des GES. Les technologies de la bioénergie devront probablement être déployées à grande échelle pour atteindre les objectifs de décarbonation et, par conséquent, la biomasse devra être de plus en plus cultivée/mobilisée. Les risques de durabilité associés à la bioénergie peuvent s'intensifier avec l'augmentation du déploiement et lorsque les matières premières proviennent du commerce international. Cette recherche applique le modèle d'indicateur de durabilité de la bioéconomie (BSIM) pour cartographier et analyser la performance de la bioénergie sur 126 questions de durabilité, en évaluant 16 études de cas de bioénergie qui reflètent l'étendue des ressources de biomasse, des technologies, des vecteurs énergétiques et des bioproduits. La recherche trouve des tendances communes en matière de performance de durabilité dans tous les projets qui peuvent éclairer la politique et la prise de décision en matière de bioénergie. Les avantages potentiels en matière de durabilité sont identifiés pour les personnes (emplois, compétences, revenus, accès à l'énergie) ; pour le développement (économie, énergie, utilisation des terres) ; pour les systèmes naturels (sol, métaux lourds) ; et pour le changement climatique (émissions, carburants). En outre, des tendances cohérentes des risques de durabilité où une attention particulière est nécessaire pour assurer la viabilité des projets de bioénergie, y compris pour les infrastructures, la mobilisation des matières premières, la techno-économie et les stocks de carbone. L'atténuation des émissions peut être un objectif principal pour la bioénergie, cette recherche révèle que les projets de bioénergie peuvent offrir des avantages potentiels bien au-delà des émissions - il existe un argument en faveur du soutien de projets basés sur les services écosystémiques et/ou la stimulation économique qu'ils peuvent fournir. Compte tenu également de la vaste dynamique et des caractéristiques des projets de bioénergie, une approche rigide de l'évaluation de la durabilité peut être incompatible. L'octroi de « crédits » sur un plus large éventail d'indicateurs de durabilité, en plus d'exiger des performances minimales dans des domaines clés, peut être plus efficace pour assurer la durabilité de la bioénergie. La bioenergía está ampliamente incluida en las estrategias energéticas por su potencial de mitigación de GEI. Es probable que las tecnologías de bioenergía tengan que implementarse a escala para cumplir con los objetivos de descarbonización y, en consecuencia, la biomasa tendrá que crecer/movilizarse cada vez más. Los riesgos de sostenibilidad asociados con la bioenergía pueden intensificarse con el aumento del despliegue y donde las materias primas se obtienen a través del comercio internacional. Esta investigación aplica el Modelo de Indicadores de Sostenibilidad de la Bioeconomía (BSIM) para mapear y analizar el rendimiento de la bioenergía en 126 temas de sostenibilidad, evaluando 16 estudios de casos de bioenergía que reflejan la amplitud de los recursos de biomasa, las tecnologías, los vectores energéticos y los bioproductos. La investigación encuentra tendencias comunes en el desempeño de la sostenibilidad en todos los proyectos que pueden informar la política de bioenergía y la toma de decisiones. Se identifican posibles beneficios de sostenibilidad para las personas (empleos, habilidades, ingresos, acceso a la energía); para el desarrollo (economía, energía, utilización de la tierra); para los sistemas naturales (suelo, metales pesados) y para el cambio climático (emisiones, combustibles). Además, las tendencias consistentes de los riesgos de sostenibilidad donde se requiere un enfoque para garantizar la viabilidad de los proyectos de bioenergía, incluida la infraestructura, la movilización de materias primas, la tecnoeconomía y las reservas de carbono. La mitigación de emisiones puede ser un objetivo principal para la bioenergía, esta investigación encuentra que los proyectos de bioenergía pueden proporcionar beneficios potenciales mucho más allá de las emisiones: existe un argumento para apoyar proyectos basados en los servicios ecosistémicos y/o la estimulación económica que pueden brindar. También dada la amplia dinámica y características de los proyectos de bioenergía, un enfoque rígido de evaluación de la sostenibilidad puede ser incompatible. La concesión de "créditos" a través de una gama más amplia de indicadores de sostenibilidad, además de requerir rendimientos mínimos en áreas clave, puede ser más eficaz para garantizar la sostenibilidad de la bioenergía. Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding 'credit' across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability. يتم تضمين الطاقة الحيوية على نطاق واسع في استراتيجيات الطاقة لإمكانات التخفيف من غازات الدفيئة. من المرجح أن يتم نشر تقنيات الطاقة الحيوية على نطاق واسع لتحقيق أهداف إزالة الكربون، وبالتالي سيتعين زيادة نمو/تعبئة الكتلة الحيوية. قد تزداد مخاطر الاستدامة المرتبطة بالطاقة الحيوية مع زيادة الانتشار وحيث يتم الحصول على المواد الأولية من خلال التجارة الدولية. يطبق هذا البحث نموذج مؤشر استدامة الاقتصاد الحيوي (BSIM) لرسم وتحليل أداء الطاقة الحيوية عبر 126 قضية استدامة، وتقييم 16 دراسة حالة للطاقة الحيوية تعكس اتساع موارد الكتلة الحيوية والتقنيات وناقلات الطاقة والمنتجات الحيوية. وجد البحث اتجاهات مشتركة في أداء الاستدامة عبر المشاريع التي يمكن أن تسترشد بها سياسة الطاقة الحيوية وصنع القرار. يتم تحديد فوائد الاستدامة المحتملة للناس (الوظائف والمهارات والدخل والوصول إلى الطاقة) ؛ للتنمية (الاقتصاد والطاقة واستخدام الأراضي) ؛ للنظم الطبيعية (التربة والمعادن الثقيلة)، و ؛ لتغير المناخ (الانبعاثات والوقود). أيضًا، الاتجاهات المتسقة لمخاطر الاستدامة حيث يكون التركيز مطلوبًا لضمان استمرارية مشاريع الطاقة الحيوية، بما في ذلك البنية التحتية وتعبئة المواد الوسيطة والاقتصاد التقني ومخزونات الكربون. قد يكون تخفيف الانبعاثات هدفًا أساسيًا للطاقة الحيوية، ويجد هذا البحث أن مشاريع الطاقة الحيوية يمكن أن توفر فوائد محتملة تتجاوز الانبعاثات - هناك حجة لدعم المشاريع القائمة على خدمات النظام الإيكولوجي و/أو التحفيز الاقتصادي الذي قد تقدمه. أيضًا نظرًا للديناميكيات والخصائص الواسعة لمشاريع الطاقة الحيوية، قد يكون النهج الصارم لتقييم الاستدامة غير متوافق. قد يكون منح "الائتمان" عبر مجموعة أوسع من مؤشرات الاستدامة بالإضافة إلى طلب الحد الأدنى من الأداء في المجالات الرئيسية أكثر فعالية في ضمان استدامة الطاقة الحيوية.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu