Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NERC Open Research A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomass and Bioenergy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bioenergy driven land use change impacts on soil greenhouse gas regulation under Short Rotation Forestry

Authors: Parmar, Kim; Keith, Aidan M.; Rowe, Rebecca L.; Sohi, Saran P.; Moeckel, Claudia; Pereira, M. Gloria; McNamara, Niall P.;

Bioenergy driven land use change impacts on soil greenhouse gas regulation under Short Rotation Forestry

Abstract

Second-generation bioenergy crops, including Short Rotation Forestry (SRF), have the potential to contribute to greenhouse gas (GHG) emissions savings through reduced soil GHG fluxes and greater soil C sequestration. If we are to predict the magnitude of any such GHG benefits a better understanding is needed of the effect of land use change (LUC) on the underlying factors which regulate GHG fluxes. Under controlled conditions we measured soil GHG flux potentials, and associated soil physico-chemical and microbial community characteristics for a range of LUC transitions from grassland land uses to SRF. These involved ten broadleaved and seven coniferous transitions. Differences in GHGs and microbial community composition assessed by phospholipid fatty acids (PLFA) profiles were detected between land uses, with distinctions between broadleaved and coniferous tree species. Compared to grassland controls, CO2 flux, total PLFAs and fungal PLFAs (on a mass of C basis), were lower under coniferous species but unaffected under broadleaved tree species. There were no significant differences in N2O and CH4 flux rates between grassland, broadleaved and coniferous land uses, though both CH4 and N2O tended to have greater uptake under broadleaved species in the upper soil layer. Effect sizes of CO2 flux across LUC transitions were positively related with effect sizes of soil pH, total PLFA and fungal PLFA. These relationships between fluxes and microbial community suggest that LUC to SRF may drive change in soil respiration by altering the composition of the soil microbial community. These findings support that LUC to SRF for bioenergy can contribute towards C savings and GHG mitigation.

Country
United Kingdom
Related Organizations
Keywords

land use change, phospholipid fatty acids, bioenergy, Short Rotation Forestry, soil respiration, Ecology and Environment, Agriculture and Soil Science, greenhouse gases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
hybrid