- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:EC | SUPERBEC| SUPERBSergio Pinheiro; Reinhard Wimmer; James O’Donnell; Sergej Muhic; Vladimir Bazjanac; Tobias Maile; Jérôme Frisch; Christoph van Treeck;handle: 10197/11001
Abstract The process of preparing building energy performance simulation (BEPS) models involves repetitive manual operations that often lead to data losses and errors. As a result, BEPS model inputs can vary widely from this time consuming, non-standardised and subjective process. This paper proposes a standardised method of information exchange between Building Information Modelling (BIM) and BEPS tools using the Information Delivery Manual (IDM) and Model View Definition (MVD) methodologies. The methodology leverages a collection of use cases to initiate the identification of exchange requirements needed by BEPS tools. The IDM/MVD framework captures and translates exchange requirements into the Industry Foundation Classes (IFC) schema. The suggested approach aims to facilitate the transfer of information from IFC based BIM to either conventional or advanced BEPS tools (e.g. EnergyPlus and Modelica) through the development of a specific MVD that defines a subset of the IFC data model that deals with building energy performance simulation. By doing so, the potential of BIM-based simulation can be fully unlocked, and a reliable and consistent IFC subset is provided as an input for energy simulation software.
Automation in Constr... arrow_drop_down Automation in ConstructionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity College Dublin: Research Repository UCDArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.autcon.2018.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Automation in Constr... arrow_drop_down Automation in ConstructionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity College Dublin: Research Repository UCDArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.autcon.2018.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Tobias Maile; Heiner Steinacker; Matthias W. Stickel; Etienne Ott; Christian Kley;doi: 10.3390/en16176115
Urban simulations play an important role on the way to a climate neutral society. To enable early assessment of different energy concepts for urban developments, energy profiles for different building types are needed. This work describes the development and use of a new engineering tool GenSim to quickly and reliably generate energy profiles for urban simulations and early building energy predictions. While GenSim is a standalone tool to create energy profiles for early design assessment, it was developed in the context of urban simulations to primarily support energy efficient urban developments within Germany. Energy engineers quickly embraced the tool due to its simplicity and comprehensible results. The development of the tool was recently switched to open source to enable its usage to a broader audience. In order to foster its development and use, a detailed testing framework has been established to ensure the quality of the results of the tool. The paper includes a detailed validation section to demonstrate the validity of the results compared to a detailed building energy simulation model and actual measured performance data.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/17/6115/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/17/6115/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Vladimir Bazjanac; Tobias Maile; Tobias Maile; Martin Fischer;Abstract Building energy performance is often inadequate given design goals. While different types of assessment methods exist, they either do not consider design goals and/or are not general enough to integrate new and innovative energy concepts. Furthermore, existing assessment methods focus mostly on the building and system level while ignoring more detailed data. With the availability and affordability of more detailed measured data, the increased number of measured data points requires a structure to organize these data. This paper presents the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured data and simulated data representing design goals. The EPCM is based on an interlinked building object hierarchy that structures the detailed performance data from a spatial and mechanical perspective. This research is developed and tested on multiple case studies that provide real-life context and more generality compared to single case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:EC | SUPERBEC| SUPERBSergio Pinheiro; Reinhard Wimmer; James O’Donnell; Sergej Muhic; Vladimir Bazjanac; Tobias Maile; Jérôme Frisch; Christoph van Treeck;handle: 10197/11001
Abstract The process of preparing building energy performance simulation (BEPS) models involves repetitive manual operations that often lead to data losses and errors. As a result, BEPS model inputs can vary widely from this time consuming, non-standardised and subjective process. This paper proposes a standardised method of information exchange between Building Information Modelling (BIM) and BEPS tools using the Information Delivery Manual (IDM) and Model View Definition (MVD) methodologies. The methodology leverages a collection of use cases to initiate the identification of exchange requirements needed by BEPS tools. The IDM/MVD framework captures and translates exchange requirements into the Industry Foundation Classes (IFC) schema. The suggested approach aims to facilitate the transfer of information from IFC based BIM to either conventional or advanced BEPS tools (e.g. EnergyPlus and Modelica) through the development of a specific MVD that defines a subset of the IFC data model that deals with building energy performance simulation. By doing so, the potential of BIM-based simulation can be fully unlocked, and a reliable and consistent IFC subset is provided as an input for energy simulation software.
Automation in Constr... arrow_drop_down Automation in ConstructionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity College Dublin: Research Repository UCDArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.autcon.2018.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Automation in Constr... arrow_drop_down Automation in ConstructionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity College Dublin: Research Repository UCDArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.autcon.2018.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Tobias Maile; Heiner Steinacker; Matthias W. Stickel; Etienne Ott; Christian Kley;doi: 10.3390/en16176115
Urban simulations play an important role on the way to a climate neutral society. To enable early assessment of different energy concepts for urban developments, energy profiles for different building types are needed. This work describes the development and use of a new engineering tool GenSim to quickly and reliably generate energy profiles for urban simulations and early building energy predictions. While GenSim is a standalone tool to create energy profiles for early design assessment, it was developed in the context of urban simulations to primarily support energy efficient urban developments within Germany. Energy engineers quickly embraced the tool due to its simplicity and comprehensible results. The development of the tool was recently switched to open source to enable its usage to a broader audience. In order to foster its development and use, a detailed testing framework has been established to ensure the quality of the results of the tool. The paper includes a detailed validation section to demonstrate the validity of the results compared to a detailed building energy simulation model and actual measured performance data.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/17/6115/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/17/6115/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Vladimir Bazjanac; Tobias Maile; Tobias Maile; Martin Fischer;Abstract Building energy performance is often inadequate given design goals. While different types of assessment methods exist, they either do not consider design goals and/or are not general enough to integrate new and innovative energy concepts. Furthermore, existing assessment methods focus mostly on the building and system level while ignoring more detailed data. With the availability and affordability of more detailed measured data, the increased number of measured data points requires a structure to organize these data. This paper presents the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured data and simulated data representing design goals. The EPCM is based on an interlinked building object hierarchy that structures the detailed performance data from a spatial and mechanical perspective. This research is developed and tested on multiple case studies that provide real-life context and more generality compared to single case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu