- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, France, France, France, Netherlands, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | 3DForModANR| 3DForModAuthors: Martin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; +10 AuthorsMartin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; Pierre Ploton; Jérôme Chave; Stéphane Mermoz; Maxime Réjou-Méchain; Florian de Boissieu; Pierre Couteron; Nicolas Barbier; Sassan Saatchi; Raphaël Pélissier; Grégoire Vincent;Forest biomass monitoring is at the core of the research agenda due to the critical importance of forest dynamics in the carbon cycle. However, forest biomass is never directly measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) relies on a series of statistical models that may propagate large errors. Here, we review the main steps usually adopted in forest aboveground biomass mapping, highlighting the major challenges and perspectives. We show that there is room for improvement along the scaling-up chain from field data collection to satellite-based large-scale mapping, which should lead to the adoption of effective practices to better control the propagation of errors. We specifically illustrate how the increasing use of emerging technologies to collect massive amounts of high-quality data may significantly improve the accuracy of forest carbon maps. Furthermore, we discuss how sources of spatially structured biases that directly propagate into remote sensing models need to be better identified and accounted for when extrapolating forest carbon estimates, e.g., through a stratification design. We finally discuss the increasing realism of 3D simulated stands, which, through radiative transfer modelling, may contribute to a better understanding of remote sensing signals and open avenues for the direct calibration of large-scale products, thereby circumventing several current difficulties.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, France, France, France, Netherlands, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | 3DForModANR| 3DForModAuthors: Martin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; +10 AuthorsMartin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; Pierre Ploton; Jérôme Chave; Stéphane Mermoz; Maxime Réjou-Méchain; Florian de Boissieu; Pierre Couteron; Nicolas Barbier; Sassan Saatchi; Raphaël Pélissier; Grégoire Vincent;Forest biomass monitoring is at the core of the research agenda due to the critical importance of forest dynamics in the carbon cycle. However, forest biomass is never directly measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) relies on a series of statistical models that may propagate large errors. Here, we review the main steps usually adopted in forest aboveground biomass mapping, highlighting the major challenges and perspectives. We show that there is room for improvement along the scaling-up chain from field data collection to satellite-based large-scale mapping, which should lead to the adoption of effective practices to better control the propagation of errors. We specifically illustrate how the increasing use of emerging technologies to collect massive amounts of high-quality data may significantly improve the accuracy of forest carbon maps. Furthermore, we discuss how sources of spatially structured biases that directly propagate into remote sensing models need to be better identified and accounted for when extrapolating forest carbon estimates, e.g., through a stratification design. We finally discuss the increasing realism of 3D simulated stands, which, through radiative transfer modelling, may contribute to a better understanding of remote sensing signals and open avenues for the direct calibration of large-scale products, thereby circumventing several current difficulties.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Wiley Yitong Yao; Philippe Ciais; Nicolas Viovy; Emilie Joetzjer; Jerome Chave;AbstractDuring the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process‐based models have struggled to include drought‐induced responses of growth and mortality and have not been evaluated against plot data. A process‐based model, ORCHIDEE‐CAN‐NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought‐induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2‐induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2‐induced higher foliage area.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Wiley Yitong Yao; Philippe Ciais; Nicolas Viovy; Emilie Joetzjer; Jerome Chave;AbstractDuring the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process‐based models have struggled to include drought‐induced responses of growth and mortality and have not been evaluated against plot data. A process‐based model, ORCHIDEE‐CAN‐NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought‐induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2‐induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2‐induced higher foliage area.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Spain, Brazil, Brazil, United Kingdom, France, France, United States, France, France, Australia, France, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthPhillips, Oliver L.; Aragao, Luiz E.O.C.; Lewis, Simon L.; Fisher, Joshua, B.; Lloyd, Jon; Lopez-Gonzales, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A.; van Der Heijden, Geertje; Almeida, Samuel; Amaral, Ieda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R.; Banki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jérôme; Alves de Oliveira, Atila Cristina; Cardozo, Nallaret Davila; Czimczik, Claudia I.; Feldpausch, Ted R.; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jimenez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A.; Nepstad, Daniel; Patino, Sandra; Penuela, Maria Cristina; Prieto, Adriana; Ramirez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; ter Steege, Hans; Stropp, Juliana; Vasquez, Rodolfo; Zelazowski, Przemyslaw; Davila, Esteban Alvarez; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio, Euridice; Keeling, Helen; Killeen, Tim J.; Laurance, William F.; Pena Cruz, Antonio; Pitman, Nigel C.A.; Nunez Vargas, Percy; Ramirez-Angulo, Hirma; Rudas, Agustin; Salamao, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando;Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 10 15 to 1.6 × 10 15 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,461 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Spain, Brazil, Brazil, United Kingdom, France, France, United States, France, France, Australia, France, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthPhillips, Oliver L.; Aragao, Luiz E.O.C.; Lewis, Simon L.; Fisher, Joshua, B.; Lloyd, Jon; Lopez-Gonzales, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A.; van Der Heijden, Geertje; Almeida, Samuel; Amaral, Ieda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R.; Banki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jérôme; Alves de Oliveira, Atila Cristina; Cardozo, Nallaret Davila; Czimczik, Claudia I.; Feldpausch, Ted R.; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jimenez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A.; Nepstad, Daniel; Patino, Sandra; Penuela, Maria Cristina; Prieto, Adriana; Ramirez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; ter Steege, Hans; Stropp, Juliana; Vasquez, Rodolfo; Zelazowski, Przemyslaw; Davila, Esteban Alvarez; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio, Euridice; Keeling, Helen; Killeen, Tim J.; Laurance, William F.; Pena Cruz, Antonio; Pitman, Nigel C.A.; Nunez Vargas, Percy; Ramirez-Angulo, Hirma; Rudas, Agustin; Salamao, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando;Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 10 15 to 1.6 × 10 15 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,461 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Proceedings of the National Academy of Sciences Funded by:ANR | TULIP, ANR | ANAEE-FRANR| TULIP ,ANR| ANAEE-FRTao, Shengli; Chave, Jérôme; Frison, Pierre-Louis; Le Toan, Thuy; Ciais, Philippe; Fang, Jingyun; J.-P., Wigneron; Santoro, Maurizio; Yang, Hui; Li, Xiaojun; Labrière, Nicolas; Saatchi, Sassan;Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997–1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999–2000, 2004–2005, 2010–2011, and 2015 droughts in tropical Africa; and 1997–1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Proceedings of the National Academy of Sciences Funded by:ANR | TULIP, ANR | ANAEE-FRANR| TULIP ,ANR| ANAEE-FRTao, Shengli; Chave, Jérôme; Frison, Pierre-Louis; Le Toan, Thuy; Ciais, Philippe; Fang, Jingyun; J.-P., Wigneron; Santoro, Maurizio; Yang, Hui; Li, Xiaojun; Labrière, Nicolas; Saatchi, Sassan;Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997–1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999–2000, 2004–2005, 2010–2011, and 2015 droughts in tropical Africa; and 1997–1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, FrancePublisher:Wiley Fan, Lei; Cui, Tianxiang; Wigneron, Jean‐pierre; Ciais, Philippe; Sitch, Stephen; Brandt, Martin; Li, Xin; Niu, Shuli; Xiao, Xiangming; Chave, Jérôme; Wu, Chaoyang; Li, Wei; Yuan, Wenping; Xing, Zanpin; Li, Xiaojun; Wang, Mengjia; Liu, Xiangzhuo; Chen, Xiuzhi; Qin, Yuanwei; Yang, Hui; Tang, Qiang; Li, Yuechen; Ma, Mingguo; Fensholt, Rasmus;doi: 10.1111/gcb.17423
pmid: 39010751
AbstractThe extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low‐frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre‐El Niño levels by the end of 2020, resulting in an AGC sink of Pg C year−1 during 2014–2020. This sink was dominated by strong AGC increases ( Pg C year−1) in non‐forest woody vegetation during 2016–2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non‐forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, FrancePublisher:Wiley Fan, Lei; Cui, Tianxiang; Wigneron, Jean‐pierre; Ciais, Philippe; Sitch, Stephen; Brandt, Martin; Li, Xin; Niu, Shuli; Xiao, Xiangming; Chave, Jérôme; Wu, Chaoyang; Li, Wei; Yuan, Wenping; Xing, Zanpin; Li, Xiaojun; Wang, Mengjia; Liu, Xiangzhuo; Chen, Xiuzhi; Qin, Yuanwei; Yang, Hui; Tang, Qiang; Li, Yuechen; Ma, Mingguo; Fensholt, Rasmus;doi: 10.1111/gcb.17423
pmid: 39010751
AbstractThe extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low‐frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre‐El Niño levels by the end of 2020, resulting in an AGC sink of Pg C year−1 during 2014–2020. This sink was dominated by strong AGC increases ( Pg C year−1) in non‐forest woody vegetation during 2016–2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non‐forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | Biodiversity and ecosyste..., UKRI | Biodiversity and ecosyste..., UKRI | Tropical forests response... +4 projectsUKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Tropical forests responses to a changing climate: a quest at the interface between trait-based ecology, forest dynamics and remote sensing ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| Evaluating fire-induced dieback of Amazonian rainforest ,UKRI| A detailed assessment of ecosystem carbon dynamics along an elevation transect in the AndesAuthors: Aguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; +130 AuthorsAguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; Nava-Miranda, Maria Guadalupe; González-M, Roy; Hurtado-M, Ana Belén; Revilla, Norma Salinas; Vilanova, Emilio; Almeida, Everton; de Oliveira, Edmar Almeida; Alvarez-Davila, Esteban; Alves, Luciana F; de Andrade, Ana Cristina Segalin; Lola da Costa, Antonio Carlos; Vieira, Simone Aparecida; Aragão, Luiz; Arets, Eric; Aymard C., Gerardo A; Baccaro, Fabrício; Bakker, Yvonne Vanessa; Baker, Timothy R; Bánki, Olaf; Baraloto, Christopher; de Camargo, Plínio Barbosa; Berenguer, Erika; Blanc, Lilian; Bonal, Damien; Bongers, Frans; Bordin, Kauane Maiara; Brienen, Roel; Brown, Foster; Prestes, Nayane Cristina CS; Castilho, Carolina V; Ribeiro, Sabina Cerruto; de Souza, Fernanda Coelho; Comiskey, James A; Valverde, Fernando Cornejo; Müller, Sandra Cristina; da Costa Silva, Richarlly; do Vale, Julio Daniel; de Andrade Kamimura, Vitor; de Oliveira Perdiz, Ricardo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Di Fiore, Anthony; Disney, Mathias; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted R; Ramos, Rafael Flora; Llampazo, Gerardo Flores; Martins, Valéria Forni; Fortunel, Claire; Cabrera, Karina Garcia; Barroso, Jorcely Gonçalves; Hérault, Bruno; Herrera, Rafael; Honorio Coronado, Eurídice N; Huamantupa-Chuquimaco, Isau; Pipoly, John J; Zanini, Katia Janaina; Jiménez, Eliana; Joly, Carlos A; Kalamandeen, Michelle; Klipel, Joice; Levesley, Aurora; Oviedo, Wilmar Lopez; Magnusson, William E; dos Santos, Rubens Manoel; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; de Almeida Reis, Simone Matias; Melo Cruz, Omar Aurelio; Mendoza, Abel Monteagudo; Morandi, Paulo; Muscarella, Robert; Nascimento, Henrique; Neill, David A; Menor, Imma Oliveras; Palacios, Walter A; Palacios-Ramos, Sonia; Pallqui Camacho, Nadir Carolina; Pardo, Guido; Pennington, R Toby; de Oliveira Pereira, Luciana; Pickavance, Georgia; Picolotto, Rayana Caroline; Pitman, Nigel CA; Prieto, Adriana; Quesada, Carlos; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Correa, Zorayda Restrepo; Reyna Huaymacari, José Manuel; Rodriguez, Carlos Reynel; Rivas-Torres, Gonzalo; Roopsind, Anand; Rudas, Agustín; Salgado Negret, Beatriz; van der Sande, Masha T; Santana, Flávia Delgado; Maës Santos, Flavio Antonio; Bergamin, Rodrigo Scarton; Silman, Miles R; Silva, Camila; Espejo, Javier Silva; Silveira, Marcos; Souza, Fernanda Cristina; Sullivan, Martin JP; Swamy, Varun; Talbot, Joey; Terborgh, John J; van der Meer, Peter J; van der Heijden, Geertje; van Ulft, Bert; Martinez, Rodolfo Vasquez; Vedovato, Laura; Vleminckx, Jason; Vos, Vincent Antoine; Wortel, Verginia; Zuidema, Pieter A; Zwerts, Joeri A; Laurance, Susan GW; Laurance, William F; Chave, Jerôme; Dalling, James W; Barlow, Jos; Poorter, Lourens; Enquist, Brian J; ter Steege, Hans; Phillips, Oliver L; Galbraith, David; Malhi, Yadvinder;pmid: 40048518
Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change.
Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | Biodiversity and ecosyste..., UKRI | Biodiversity and ecosyste..., UKRI | Tropical forests response... +4 projectsUKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Tropical forests responses to a changing climate: a quest at the interface between trait-based ecology, forest dynamics and remote sensing ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| Evaluating fire-induced dieback of Amazonian rainforest ,UKRI| A detailed assessment of ecosystem carbon dynamics along an elevation transect in the AndesAuthors: Aguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; +130 AuthorsAguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; Nava-Miranda, Maria Guadalupe; González-M, Roy; Hurtado-M, Ana Belén; Revilla, Norma Salinas; Vilanova, Emilio; Almeida, Everton; de Oliveira, Edmar Almeida; Alvarez-Davila, Esteban; Alves, Luciana F; de Andrade, Ana Cristina Segalin; Lola da Costa, Antonio Carlos; Vieira, Simone Aparecida; Aragão, Luiz; Arets, Eric; Aymard C., Gerardo A; Baccaro, Fabrício; Bakker, Yvonne Vanessa; Baker, Timothy R; Bánki, Olaf; Baraloto, Christopher; de Camargo, Plínio Barbosa; Berenguer, Erika; Blanc, Lilian; Bonal, Damien; Bongers, Frans; Bordin, Kauane Maiara; Brienen, Roel; Brown, Foster; Prestes, Nayane Cristina CS; Castilho, Carolina V; Ribeiro, Sabina Cerruto; de Souza, Fernanda Coelho; Comiskey, James A; Valverde, Fernando Cornejo; Müller, Sandra Cristina; da Costa Silva, Richarlly; do Vale, Julio Daniel; de Andrade Kamimura, Vitor; de Oliveira Perdiz, Ricardo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Di Fiore, Anthony; Disney, Mathias; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted R; Ramos, Rafael Flora; Llampazo, Gerardo Flores; Martins, Valéria Forni; Fortunel, Claire; Cabrera, Karina Garcia; Barroso, Jorcely Gonçalves; Hérault, Bruno; Herrera, Rafael; Honorio Coronado, Eurídice N; Huamantupa-Chuquimaco, Isau; Pipoly, John J; Zanini, Katia Janaina; Jiménez, Eliana; Joly, Carlos A; Kalamandeen, Michelle; Klipel, Joice; Levesley, Aurora; Oviedo, Wilmar Lopez; Magnusson, William E; dos Santos, Rubens Manoel; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; de Almeida Reis, Simone Matias; Melo Cruz, Omar Aurelio; Mendoza, Abel Monteagudo; Morandi, Paulo; Muscarella, Robert; Nascimento, Henrique; Neill, David A; Menor, Imma Oliveras; Palacios, Walter A; Palacios-Ramos, Sonia; Pallqui Camacho, Nadir Carolina; Pardo, Guido; Pennington, R Toby; de Oliveira Pereira, Luciana; Pickavance, Georgia; Picolotto, Rayana Caroline; Pitman, Nigel CA; Prieto, Adriana; Quesada, Carlos; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Correa, Zorayda Restrepo; Reyna Huaymacari, José Manuel; Rodriguez, Carlos Reynel; Rivas-Torres, Gonzalo; Roopsind, Anand; Rudas, Agustín; Salgado Negret, Beatriz; van der Sande, Masha T; Santana, Flávia Delgado; Maës Santos, Flavio Antonio; Bergamin, Rodrigo Scarton; Silman, Miles R; Silva, Camila; Espejo, Javier Silva; Silveira, Marcos; Souza, Fernanda Cristina; Sullivan, Martin JP; Swamy, Varun; Talbot, Joey; Terborgh, John J; van der Meer, Peter J; van der Heijden, Geertje; van Ulft, Bert; Martinez, Rodolfo Vasquez; Vedovato, Laura; Vleminckx, Jason; Vos, Vincent Antoine; Wortel, Verginia; Zuidema, Pieter A; Zwerts, Joeri A; Laurance, Susan GW; Laurance, William F; Chave, Jerôme; Dalling, James W; Barlow, Jos; Poorter, Lourens; Enquist, Brian J; ter Steege, Hans; Phillips, Oliver L; Galbraith, David; Malhi, Yadvinder;pmid: 40048518
Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change.
Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Liang Xu; Victoria Meyer; Mariano García; Jérôme Chave; Sassan Saatchi; Alvaro Duque; Antonio Ferraz; Antonio Ferraz;Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests.Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon.Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Liang Xu; Victoria Meyer; Mariano García; Jérôme Chave; Sassan Saatchi; Alvaro Duque; Antonio Ferraz; Antonio Ferraz;Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests.Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon.Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | THREAT, ANR | TULIPEC| THREAT ,ANR| TULIPAndré Luís de Gasper; Gregory R. Pitta; Paulo Inácio Prado; Jérôme Chave; Alexander Christian Vibrans; Alexandre Adalardo de Oliveira; Hans ter Steege; Hans ter Steege; Renato A. F. de Lima; Renato A. F. de Lima;pmid: 33311511
pmc: PMC7733445
AbstractTropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83−85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25−32% less biomass, 23−31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55−70 thousand km2of forests or US$2.3−2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.
Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 158 citations 158 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNature CommunicationsArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20217-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, France, France, France, Netherlands, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | 3DForModANR| 3DForModAuthors: Martin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; +10 AuthorsMartin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; Pierre Ploton; Jérôme Chave; Stéphane Mermoz; Maxime Réjou-Méchain; Florian de Boissieu; Pierre Couteron; Nicolas Barbier; Sassan Saatchi; Raphaël Pélissier; Grégoire Vincent;Forest biomass monitoring is at the core of the research agenda due to the critical importance of forest dynamics in the carbon cycle. However, forest biomass is never directly measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) relies on a series of statistical models that may propagate large errors. Here, we review the main steps usually adopted in forest aboveground biomass mapping, highlighting the major challenges and perspectives. We show that there is room for improvement along the scaling-up chain from field data collection to satellite-based large-scale mapping, which should lead to the adoption of effective practices to better control the propagation of errors. We specifically illustrate how the increasing use of emerging technologies to collect massive amounts of high-quality data may significantly improve the accuracy of forest carbon maps. Furthermore, we discuss how sources of spatially structured biases that directly propagate into remote sensing models need to be better identified and accounted for when extrapolating forest carbon estimates, e.g., through a stratification design. We finally discuss the increasing realism of 3D simulated stands, which, through radiative transfer modelling, may contribute to a better understanding of remote sensing signals and open avenues for the direct calibration of large-scale products, thereby circumventing several current difficulties.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, France, France, France, Netherlands, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | 3DForModANR| 3DForModAuthors: Martin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; +10 AuthorsMartin Herold; Stephane Momo Takoudjou; Stephane Momo Takoudjou; Jean-Baptiste Féret; Pierre Ploton; Jérôme Chave; Stéphane Mermoz; Maxime Réjou-Méchain; Florian de Boissieu; Pierre Couteron; Nicolas Barbier; Sassan Saatchi; Raphaël Pélissier; Grégoire Vincent;Forest biomass monitoring is at the core of the research agenda due to the critical importance of forest dynamics in the carbon cycle. However, forest biomass is never directly measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) relies on a series of statistical models that may propagate large errors. Here, we review the main steps usually adopted in forest aboveground biomass mapping, highlighting the major challenges and perspectives. We show that there is room for improvement along the scaling-up chain from field data collection to satellite-based large-scale mapping, which should lead to the adoption of effective practices to better control the propagation of errors. We specifically illustrate how the increasing use of emerging technologies to collect massive amounts of high-quality data may significantly improve the accuracy of forest carbon maps. Furthermore, we discuss how sources of spatially structured biases that directly propagate into remote sensing models need to be better identified and accounted for when extrapolating forest carbon estimates, e.g., through a stratification design. We finally discuss the increasing realism of 3D simulated stands, which, through radiative transfer modelling, may contribute to a better understanding of remote sensing signals and open avenues for the direct calibration of large-scale products, thereby circumventing several current difficulties.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesCIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10712-019-09532-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Wiley Yitong Yao; Philippe Ciais; Nicolas Viovy; Emilie Joetzjer; Jerome Chave;AbstractDuring the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process‐based models have struggled to include drought‐induced responses of growth and mortality and have not been evaluated against plot data. A process‐based model, ORCHIDEE‐CAN‐NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought‐induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2‐induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2‐induced higher foliage area.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Wiley Yitong Yao; Philippe Ciais; Nicolas Viovy; Emilie Joetzjer; Jerome Chave;AbstractDuring the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process‐based models have struggled to include drought‐induced responses of growth and mortality and have not been evaluated against plot data. A process‐based model, ORCHIDEE‐CAN‐NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought‐induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2‐induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2‐induced higher foliage area.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023License: CC BY NC NDFull-Text: https://hal.science/hal-03866312Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Spain, Brazil, Brazil, United Kingdom, France, France, United States, France, France, Australia, France, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthPhillips, Oliver L.; Aragao, Luiz E.O.C.; Lewis, Simon L.; Fisher, Joshua, B.; Lloyd, Jon; Lopez-Gonzales, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A.; van Der Heijden, Geertje; Almeida, Samuel; Amaral, Ieda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R.; Banki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jérôme; Alves de Oliveira, Atila Cristina; Cardozo, Nallaret Davila; Czimczik, Claudia I.; Feldpausch, Ted R.; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jimenez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A.; Nepstad, Daniel; Patino, Sandra; Penuela, Maria Cristina; Prieto, Adriana; Ramirez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; ter Steege, Hans; Stropp, Juliana; Vasquez, Rodolfo; Zelazowski, Przemyslaw; Davila, Esteban Alvarez; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio, Euridice; Keeling, Helen; Killeen, Tim J.; Laurance, William F.; Pena Cruz, Antonio; Pitman, Nigel C.A.; Nunez Vargas, Percy; Ramirez-Angulo, Hirma; Rudas, Agustin; Salamao, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando;Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 10 15 to 1.6 × 10 15 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,461 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Spain, Brazil, Brazil, United Kingdom, France, France, United States, France, France, Australia, France, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthPhillips, Oliver L.; Aragao, Luiz E.O.C.; Lewis, Simon L.; Fisher, Joshua, B.; Lloyd, Jon; Lopez-Gonzales, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A.; van Der Heijden, Geertje; Almeida, Samuel; Amaral, Ieda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R.; Banki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jérôme; Alves de Oliveira, Atila Cristina; Cardozo, Nallaret Davila; Czimczik, Claudia I.; Feldpausch, Ted R.; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jimenez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A.; Nepstad, Daniel; Patino, Sandra; Penuela, Maria Cristina; Prieto, Adriana; Ramirez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; ter Steege, Hans; Stropp, Juliana; Vasquez, Rodolfo; Zelazowski, Przemyslaw; Davila, Esteban Alvarez; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio, Euridice; Keeling, Helen; Killeen, Tim J.; Laurance, William F.; Pena Cruz, Antonio; Pitman, Nigel C.A.; Nunez Vargas, Percy; Ramirez-Angulo, Hirma; Rudas, Agustin; Salamao, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando;Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 10 15 to 1.6 × 10 15 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,461 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2009Full-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79806Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2009Full-Text: https://escholarship.org/uc/item/81h0n554Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009License: CC-BY-ND-NCFull-Text: https://hal.science/hal-01032111Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1164033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Proceedings of the National Academy of Sciences Funded by:ANR | TULIP, ANR | ANAEE-FRANR| TULIP ,ANR| ANAEE-FRTao, Shengli; Chave, Jérôme; Frison, Pierre-Louis; Le Toan, Thuy; Ciais, Philippe; Fang, Jingyun; J.-P., Wigneron; Santoro, Maurizio; Yang, Hui; Li, Xiaojun; Labrière, Nicolas; Saatchi, Sassan;Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997–1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999–2000, 2004–2005, 2010–2011, and 2015 droughts in tropical Africa; and 1997–1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Proceedings of the National Academy of Sciences Funded by:ANR | TULIP, ANR | ANAEE-FRANR| TULIP ,ANR| ANAEE-FRTao, Shengli; Chave, Jérôme; Frison, Pierre-Louis; Le Toan, Thuy; Ciais, Philippe; Fang, Jingyun; J.-P., Wigneron; Santoro, Maurizio; Yang, Hui; Li, Xiaojun; Labrière, Nicolas; Saatchi, Sassan;Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997–1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999–2000, 2004–2005, 2010–2011, and 2015 droughts in tropical Africa; and 1997–1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NC NDFull-Text: https://hal.science/hal-03787959Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2116626119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, FrancePublisher:Wiley Fan, Lei; Cui, Tianxiang; Wigneron, Jean‐pierre; Ciais, Philippe; Sitch, Stephen; Brandt, Martin; Li, Xin; Niu, Shuli; Xiao, Xiangming; Chave, Jérôme; Wu, Chaoyang; Li, Wei; Yuan, Wenping; Xing, Zanpin; Li, Xiaojun; Wang, Mengjia; Liu, Xiangzhuo; Chen, Xiuzhi; Qin, Yuanwei; Yang, Hui; Tang, Qiang; Li, Yuechen; Ma, Mingguo; Fensholt, Rasmus;doi: 10.1111/gcb.17423
pmid: 39010751
AbstractThe extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low‐frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre‐El Niño levels by the end of 2020, resulting in an AGC sink of Pg C year−1 during 2014–2020. This sink was dominated by strong AGC increases ( Pg C year−1) in non‐forest woody vegetation during 2016–2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non‐forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, FrancePublisher:Wiley Fan, Lei; Cui, Tianxiang; Wigneron, Jean‐pierre; Ciais, Philippe; Sitch, Stephen; Brandt, Martin; Li, Xin; Niu, Shuli; Xiao, Xiangming; Chave, Jérôme; Wu, Chaoyang; Li, Wei; Yuan, Wenping; Xing, Zanpin; Li, Xiaojun; Wang, Mengjia; Liu, Xiangzhuo; Chen, Xiuzhi; Qin, Yuanwei; Yang, Hui; Tang, Qiang; Li, Yuechen; Ma, Mingguo; Fensholt, Rasmus;doi: 10.1111/gcb.17423
pmid: 39010751
AbstractThe extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low‐frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre‐El Niño levels by the end of 2020, resulting in an AGC sink of Pg C year−1 during 2014–2020. This sink was dominated by strong AGC increases ( Pg C year−1) in non‐forest woody vegetation during 2016–2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non‐forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | Biodiversity and ecosyste..., UKRI | Biodiversity and ecosyste..., UKRI | Tropical forests response... +4 projectsUKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Tropical forests responses to a changing climate: a quest at the interface between trait-based ecology, forest dynamics and remote sensing ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| Evaluating fire-induced dieback of Amazonian rainforest ,UKRI| A detailed assessment of ecosystem carbon dynamics along an elevation transect in the AndesAuthors: Aguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; +130 AuthorsAguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; Nava-Miranda, Maria Guadalupe; González-M, Roy; Hurtado-M, Ana Belén; Revilla, Norma Salinas; Vilanova, Emilio; Almeida, Everton; de Oliveira, Edmar Almeida; Alvarez-Davila, Esteban; Alves, Luciana F; de Andrade, Ana Cristina Segalin; Lola da Costa, Antonio Carlos; Vieira, Simone Aparecida; Aragão, Luiz; Arets, Eric; Aymard C., Gerardo A; Baccaro, Fabrício; Bakker, Yvonne Vanessa; Baker, Timothy R; Bánki, Olaf; Baraloto, Christopher; de Camargo, Plínio Barbosa; Berenguer, Erika; Blanc, Lilian; Bonal, Damien; Bongers, Frans; Bordin, Kauane Maiara; Brienen, Roel; Brown, Foster; Prestes, Nayane Cristina CS; Castilho, Carolina V; Ribeiro, Sabina Cerruto; de Souza, Fernanda Coelho; Comiskey, James A; Valverde, Fernando Cornejo; Müller, Sandra Cristina; da Costa Silva, Richarlly; do Vale, Julio Daniel; de Andrade Kamimura, Vitor; de Oliveira Perdiz, Ricardo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Di Fiore, Anthony; Disney, Mathias; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted R; Ramos, Rafael Flora; Llampazo, Gerardo Flores; Martins, Valéria Forni; Fortunel, Claire; Cabrera, Karina Garcia; Barroso, Jorcely Gonçalves; Hérault, Bruno; Herrera, Rafael; Honorio Coronado, Eurídice N; Huamantupa-Chuquimaco, Isau; Pipoly, John J; Zanini, Katia Janaina; Jiménez, Eliana; Joly, Carlos A; Kalamandeen, Michelle; Klipel, Joice; Levesley, Aurora; Oviedo, Wilmar Lopez; Magnusson, William E; dos Santos, Rubens Manoel; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; de Almeida Reis, Simone Matias; Melo Cruz, Omar Aurelio; Mendoza, Abel Monteagudo; Morandi, Paulo; Muscarella, Robert; Nascimento, Henrique; Neill, David A; Menor, Imma Oliveras; Palacios, Walter A; Palacios-Ramos, Sonia; Pallqui Camacho, Nadir Carolina; Pardo, Guido; Pennington, R Toby; de Oliveira Pereira, Luciana; Pickavance, Georgia; Picolotto, Rayana Caroline; Pitman, Nigel CA; Prieto, Adriana; Quesada, Carlos; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Correa, Zorayda Restrepo; Reyna Huaymacari, José Manuel; Rodriguez, Carlos Reynel; Rivas-Torres, Gonzalo; Roopsind, Anand; Rudas, Agustín; Salgado Negret, Beatriz; van der Sande, Masha T; Santana, Flávia Delgado; Maës Santos, Flavio Antonio; Bergamin, Rodrigo Scarton; Silman, Miles R; Silva, Camila; Espejo, Javier Silva; Silveira, Marcos; Souza, Fernanda Cristina; Sullivan, Martin JP; Swamy, Varun; Talbot, Joey; Terborgh, John J; van der Meer, Peter J; van der Heijden, Geertje; van Ulft, Bert; Martinez, Rodolfo Vasquez; Vedovato, Laura; Vleminckx, Jason; Vos, Vincent Antoine; Wortel, Verginia; Zuidema, Pieter A; Zwerts, Joeri A; Laurance, Susan GW; Laurance, William F; Chave, Jerôme; Dalling, James W; Barlow, Jos; Poorter, Lourens; Enquist, Brian J; ter Steege, Hans; Phillips, Oliver L; Galbraith, David; Malhi, Yadvinder;pmid: 40048518
Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change.
Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | Biodiversity and ecosyste..., UKRI | Biodiversity and ecosyste..., UKRI | Tropical forests response... +4 projectsUKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Tropical forests responses to a changing climate: a quest at the interface between trait-based ecology, forest dynamics and remote sensing ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| Evaluating fire-induced dieback of Amazonian rainforest ,UKRI| A detailed assessment of ecosystem carbon dynamics along an elevation transect in the AndesAuthors: Aguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; +130 AuthorsAguirre-Gutiérrez, Jesús; Díaz, Sandra; Rifai, Sami W; Corral-Rivas, Jose Javier; Nava-Miranda, Maria Guadalupe; González-M, Roy; Hurtado-M, Ana Belén; Revilla, Norma Salinas; Vilanova, Emilio; Almeida, Everton; de Oliveira, Edmar Almeida; Alvarez-Davila, Esteban; Alves, Luciana F; de Andrade, Ana Cristina Segalin; Lola da Costa, Antonio Carlos; Vieira, Simone Aparecida; Aragão, Luiz; Arets, Eric; Aymard C., Gerardo A; Baccaro, Fabrício; Bakker, Yvonne Vanessa; Baker, Timothy R; Bánki, Olaf; Baraloto, Christopher; de Camargo, Plínio Barbosa; Berenguer, Erika; Blanc, Lilian; Bonal, Damien; Bongers, Frans; Bordin, Kauane Maiara; Brienen, Roel; Brown, Foster; Prestes, Nayane Cristina CS; Castilho, Carolina V; Ribeiro, Sabina Cerruto; de Souza, Fernanda Coelho; Comiskey, James A; Valverde, Fernando Cornejo; Müller, Sandra Cristina; da Costa Silva, Richarlly; do Vale, Julio Daniel; de Andrade Kamimura, Vitor; de Oliveira Perdiz, Ricardo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Di Fiore, Anthony; Disney, Mathias; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted R; Ramos, Rafael Flora; Llampazo, Gerardo Flores; Martins, Valéria Forni; Fortunel, Claire; Cabrera, Karina Garcia; Barroso, Jorcely Gonçalves; Hérault, Bruno; Herrera, Rafael; Honorio Coronado, Eurídice N; Huamantupa-Chuquimaco, Isau; Pipoly, John J; Zanini, Katia Janaina; Jiménez, Eliana; Joly, Carlos A; Kalamandeen, Michelle; Klipel, Joice; Levesley, Aurora; Oviedo, Wilmar Lopez; Magnusson, William E; dos Santos, Rubens Manoel; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; de Almeida Reis, Simone Matias; Melo Cruz, Omar Aurelio; Mendoza, Abel Monteagudo; Morandi, Paulo; Muscarella, Robert; Nascimento, Henrique; Neill, David A; Menor, Imma Oliveras; Palacios, Walter A; Palacios-Ramos, Sonia; Pallqui Camacho, Nadir Carolina; Pardo, Guido; Pennington, R Toby; de Oliveira Pereira, Luciana; Pickavance, Georgia; Picolotto, Rayana Caroline; Pitman, Nigel CA; Prieto, Adriana; Quesada, Carlos; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Correa, Zorayda Restrepo; Reyna Huaymacari, José Manuel; Rodriguez, Carlos Reynel; Rivas-Torres, Gonzalo; Roopsind, Anand; Rudas, Agustín; Salgado Negret, Beatriz; van der Sande, Masha T; Santana, Flávia Delgado; Maës Santos, Flavio Antonio; Bergamin, Rodrigo Scarton; Silman, Miles R; Silva, Camila; Espejo, Javier Silva; Silveira, Marcos; Souza, Fernanda Cristina; Sullivan, Martin JP; Swamy, Varun; Talbot, Joey; Terborgh, John J; van der Meer, Peter J; van der Heijden, Geertje; van Ulft, Bert; Martinez, Rodolfo Vasquez; Vedovato, Laura; Vleminckx, Jason; Vos, Vincent Antoine; Wortel, Verginia; Zuidema, Pieter A; Zwerts, Joeri A; Laurance, Susan GW; Laurance, William F; Chave, Jerôme; Dalling, James W; Barlow, Jos; Poorter, Lourens; Enquist, Brian J; ter Steege, Hans; Phillips, Oliver L; Galbraith, David; Malhi, Yadvinder;pmid: 40048518
Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change.
Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research Archivee-space at Manchester Metropolitan UniversityArticle . 2025Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl5414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Liang Xu; Victoria Meyer; Mariano García; Jérôme Chave; Sassan Saatchi; Alvaro Duque; Antonio Ferraz; Antonio Ferraz;Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests.Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon.Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Liang Xu; Victoria Meyer; Mariano García; Jérôme Chave; Sassan Saatchi; Alvaro Duque; Antonio Ferraz; Antonio Ferraz;Wet tropical forests of Chocó, along the Pacific Coast of Colombia, are known for their high plant diversity and endemic species. With increasing pressure of degradation and deforestation, these forests have been prioritized for conservation and carbon offset through Reducing Emissions from Deforestation and forest Degradation (REDD+) mechanisms. We provide the first regional assessment of forest structure and aboveground biomass using measurements from a combination of ground tree inventories and airborne Light Detection and Ranging (Lidar). More than 80,000 ha of lidar samples were collected based on a stratified random sampling to provide a regionally unbiased quantification of forest structure of Chocó across gradients of vegetation structure, disturbance and elevation. We developed a model to convert measurements of vertical structure of forests into aboveground biomass (AGB) for terra firme, wetlands, and mangrove forests. We used the Random Forest machine learning model and a formal uncertainty analysis to map forest height and AGB at 1-ha spatial resolution for the entire pacific coastal region using spaceborne data, extending from the coast to higher elevation of Andean forests.Upland Chocó forests have a mean canopy height of 21.8 m and AGB of 233.0 Mg/ha, while wetland forests are characterized by a lower height and AGB (13.5 m and 117.5 Mg/a). Mangroves have a lower mean height than upland forests (16.5 m), but have a similar AGB as upland forests (229.9 Mg/ha) due to their high wood density. Within the terra firme forest class, intact forests have the highest AGB (244.3 ± 34.8 Mg/ha) followed by degraded and secondary forests with 212.57 ± 62.40 Mg/ha of biomass. Forest degradation varies in biomass loss from small-scale selective logging and firewood harvesting to large-scale tree removals for gold mining, settlements, and illegal logging. Our findings suggest that the forest degradation has already caused the loss of more than 115 million tons of dry biomass, or 58 million tons of carbon.Our assessment of carbon stocks and forest degradation can be used as a reference for reporting on the state of the Chocó forests to REDD+ projects and to encourage restoration efforts through conservation and climate mitigation policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-019-0117-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu