- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV V. M. Andreev; A. S. Vlasov; Antonio Martí; A. N. Panchak; Antonio Luque; Antonio Luque;The insertion of quantum dots in a host material produces band offsets which are greatly dependent on the field of strains brought about by this insertion. Based on the Empiric KP Hamiltonian model, the energy spectrum of the quantum dot/host system is easily calculated and a relationship between the conduction and valence band offsets is determined by the energy at which the lowest peak of the sub-bandgap quantum efficiency of an intermediate band solar cell is situated; therefore knowledge of the valence band offset leads to knowledge of both offsets. The calculated sub-bandgap quantum efficiency due to the quantum dot is rather insensitive to the value of the valence band offset. However, the calculated quantum efficiency of the wetting layer, modeled as a quantum well, is sensitive to the valence band offset and a fitting with the measured value is possible resulting in a determination of both offsets in the finished solar cell with its final field of strains. The method is applied to an intermediate-band solar cell prototype made with InAs quantum dots in GaAs.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Funded by:SGOV | APLICACION DE ESTRUCTURAS...SGOV| APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS A LA MEJORA DE LA EFICIENCIA DE LAS CELULAS SOLARESAuthors: Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; +1 AuthorsDatas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio;handle: 2117/135411
A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 °C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10–20 times higher than that of lead-acid batteries, 2–6 times than that of Li-ion batteries and 5–10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20–45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200–450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 115visibility views 115 download downloads 718 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ramiro González, Iñigo; Antolín Fernández, Elisa; Hwang, J.; Teran, A.; Martin, A.J.; García-Linares Fontes, Pablo; Millunchick, J.; Phillips, J.; Martí Vega, Antonio; Luque López, Antonio;In this work, we study type-II GaSb/GaAs quantum-dot intermediate band solar cells (IBSCs) by means of quantum efficiency (QE) measurements. We are able, for the first time, to measure an absolute QE which clearly reveals the three characteristic bandgaps of an IBSC; EG, EH, and EL, for which we found the values 1.52, 1.02, and 0.49 eV, respectively, at 9 K. Under monochromatic illumination, QE at the energies EH and EL is 10–4 and 10–8, respectively. These low values are explained by the lack of efficient mechanisms of completing the second sub-bandgap transition when only monochromatic illumination is used. The addition of a secondary light source (E = 1.32 eV) during the measurements produces an increase in the measured QE at EL of almost three orders of magnitude.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Wiley Funded by:SGOV | APLICACION DE ESTRUCTURAS...SGOV| APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS A LA MEJORA DE LA EFICIENCIA DE LAS CELULAS SOLARESR. A. Salii; Antonio Martí; Alexey M. Nadtochiy; Alexey M. Nadtochiy; A. S. Payusov; A. S. Payusov; M. Z. Shvarts; Nikolay A. Kalyuzhnyy; Viacheslav M. Andreev; Antonio Luque; Antonio Luque; Pavel N. Brunkov; Pavel N. Brunkov; Vladimir N. Nevedomsky; Sergey A. Mintairov;doi: 10.1002/pip.2789
AbstractResearch into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique is presented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The best conditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among a wide range of possibilities. Solar cells with an excellent quantum efficiency have been obtained, with a sub‐bandgap photo‐response of 0.07 mA/cm2 per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potential of this technology to be able to increase the efficiency of lattice‐matched multi‐junction solar cells and contributing to a better understanding of QD technology toward the achievement of practical intermediate‐band solar cells. Copyright © 2016 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAProgress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAProgress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Funded by:SGOV | APLICACION DE ESTRUCTURAS..., EC | NGCPVSGOV| APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS A LA MEJORA DE LA EFICIENCIA DE LAS CELULAS SOLARES ,EC| NGCPVAuthors: López Estrada, Esther; Datas Medina, Alejandro; Ramiro González, Iñigo; García-Linares Fontes, Pablo; +8 AuthorsLópez Estrada, Esther; Datas Medina, Alejandro; Ramiro González, Iñigo; García-Linares Fontes, Pablo; Antolín Fernández, Elisa; Artacho Huertas, Irene; Martí Vega, Antonio; Luque López, Antonio; Shoji, Y.; Sogabe, T.; Ogura, A.; Okada, Y.;In this work we report, for the first time at room temperature, experimental results that prove, simultaneously in the same device, the two main physical principles involved in the operation of intermediate band solar cells: (1) the production of sub-bandgap photocurrent by two optical transitions through the intermediate band; (2) the generation of an output voltage which is not limited by the photon energy absorption threshold. These principles, which had always required cryogenic temperatures to be evidenced all together, are now demonstrated at room temperature on an intermediate band solar cell based on InAs quantum dots with Al0.3Ga0.7As barriers.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV V. M. Andreev; A. S. Vlasov; Antonio Martí; A. N. Panchak; Antonio Luque; Antonio Luque;The insertion of quantum dots in a host material produces band offsets which are greatly dependent on the field of strains brought about by this insertion. Based on the Empiric KP Hamiltonian model, the energy spectrum of the quantum dot/host system is easily calculated and a relationship between the conduction and valence band offsets is determined by the energy at which the lowest peak of the sub-bandgap quantum efficiency of an intermediate band solar cell is situated; therefore knowledge of the valence band offset leads to knowledge of both offsets. The calculated sub-bandgap quantum efficiency due to the quantum dot is rather insensitive to the value of the valence band offset. However, the calculated quantum efficiency of the wetting layer, modeled as a quantum well, is sensitive to the valence band offset and a fitting with the measured value is possible resulting in a determination of both offsets in the finished solar cell with its final field of strains. The method is applied to an intermediate-band solar cell prototype made with InAs quantum dots in GaAs.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Funded by:SGOV | APLICACION DE ESTRUCTURAS...SGOV| APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS A LA MEJORA DE LA EFICIENCIA DE LAS CELULAS SOLARESAuthors: Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; +1 AuthorsDatas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio;handle: 2117/135411
A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 °C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10–20 times higher than that of lead-acid batteries, 2–6 times than that of Li-ion batteries and 5–10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20–45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200–450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 115visibility views 115 download downloads 718 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ramiro González, Iñigo; Antolín Fernández, Elisa; Hwang, J.; Teran, A.; Martin, A.J.; García-Linares Fontes, Pablo; Millunchick, J.; Phillips, J.; Martí Vega, Antonio; Luque López, Antonio;In this work, we study type-II GaSb/GaAs quantum-dot intermediate band solar cells (IBSCs) by means of quantum efficiency (QE) measurements. We are able, for the first time, to measure an absolute QE which clearly reveals the three characteristic bandgaps of an IBSC; EG, EH, and EL, for which we found the values 1.52, 1.02, and 0.49 eV, respectively, at 9 K. Under monochromatic illumination, QE at the energies EH and EL is 10–4 and 10–8, respectively. These low values are explained by the lack of efficient mechanisms of completing the second sub-bandgap transition when only monochromatic illumination is used. The addition of a secondary light source (E = 1.32 eV) during the measurements produces an increase in the measured QE at EL of almost three orders of magnitude.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Wiley Funded by:SGOV | APLICACION DE ESTRUCTURAS...SGOV| APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS A LA MEJORA DE LA EFICIENCIA DE LAS CELULAS SOLARESR. A. Salii; Antonio Martí; Alexey M. Nadtochiy; Alexey M. Nadtochiy; A. S. Payusov; A. S. Payusov; M. Z. Shvarts; Nikolay A. Kalyuzhnyy; Viacheslav M. Andreev; Antonio Luque; Antonio Luque; Pavel N. Brunkov; Pavel N. Brunkov; Vladimir N. Nevedomsky; Sergey A. Mintairov;doi: 10.1002/pip.2789
AbstractResearch into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique is presented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The best conditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among a wide range of possibilities. Solar cells with an excellent quantum efficiency have been obtained, with a sub‐bandgap photo‐response of 0.07 mA/cm2 per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potential of this technology to be able to increase the efficiency of lattice‐matched multi‐junction solar cells and contributing to a better understanding of QD technology toward the achievement of practical intermediate‐band solar cells. Copyright © 2016 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAProgress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAProgress in Photovoltaics Research and ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Funded by:SGOV | APLICACION DE ESTRUCTURAS..., EC | NGCPVSGOV| APLICACION DE ESTRUCTURAS CUANTICAS Y OTROS NUEVOS CONCEPTOS A LA MEJORA DE LA EFICIENCIA DE LAS CELULAS SOLARES ,EC| NGCPVAuthors: López Estrada, Esther; Datas Medina, Alejandro; Ramiro González, Iñigo; García-Linares Fontes, Pablo; +8 AuthorsLópez Estrada, Esther; Datas Medina, Alejandro; Ramiro González, Iñigo; García-Linares Fontes, Pablo; Antolín Fernández, Elisa; Artacho Huertas, Irene; Martí Vega, Antonio; Luque López, Antonio; Shoji, Y.; Sogabe, T.; Ogura, A.; Okada, Y.;In this work we report, for the first time at room temperature, experimental results that prove, simultaneously in the same device, the two main physical principles involved in the operation of intermediate band solar cells: (1) the production of sub-bandgap photocurrent by two optical transitions through the intermediate band; (2) the generation of an output voltage which is not limited by the photon energy absorption threshold. These principles, which had always required cryogenic temperatures to be evidenced all together, are now demonstrated at room temperature on an intermediate band solar cell based on InAs quantum dots with Al0.3Ga0.7As barriers.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu