- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research LT..., NSF | Excellence in Research: D..., NSERCNSF| Collaborative Research LTREB: Soil warming and forest ecosystem feedbacks to the climate system ,NSF| Excellence in Research: Developing a Robust, Distributed, and Automated Sensing and Control System for Smart Agriculture ,NSERCMelissa A. Knorr; A. R. Contosta; E. W. Morrison; T. J. Muratore; M. A. Anthony; I. Stoica; K. M. Geyer; M. J. Simpson; S. D. Frey;pmid: 39317790
Recent observations document that long-term soil warming in a temperate deciduous forest leads to significant soil carbon loss, whereas chronic soil nitrogen enrichment leads to significant soil carbon gain. Most global change experiments like these are single factor, investigating the impacts of one stressor in isolation of others. Because warming and ecosystem nitrogen enrichment are happening concurrently in many parts of the world, we designed a field experiment to test how these two factors, alone and in combination, impact soil carbon cycling. Here, we show that long-term continuous soil warming or nitrogen enrichment when applied alone followed the predicted response, with warming resulting in significant soil carbon loss and nitrogen fertilization tending towards soil carbon gain. The combination treatment showed an unanticipated response, whereby soil respiratory carbon loss was significantly higher than either single factor alone, but without a concomitant decline in soil carbon storage. Observations suggest that when soils are exposed to both factors simultaneously, plant carbon inputs to the soil are enhanced, counterbalancing soil carbon loss and helping maintain soil carbon stocks near control levels. This has implications for both atmospheric CO2 emissions and soil fertility and shows that coupling two important global change drivers results in a distinctive response that was not predicted by the behaviour of the single factors in isolation.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02546-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02546-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Funded by:NSERC, NSF | Collaborative Research: M...NSERC ,NSF| Collaborative Research: MRA: Elucidating Plant and Mycorrhizal Fungal Relationships and Consequences across Space and TimeT. J. Muratore; M. A. Knorr; M. J. Simpson; R. B. Stephens; R. P. Phillips; S. D. Frey;doi: 10.1111/gcb.17530
pmid: 39435521
ABSTRACTRoots contribute a large fraction of CO2 efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2 relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2021Embargo end date: 01 Jan 2021 United States, SwitzerlandPublisher:University of California Press Funded by:NSF | Graduate Research Fellows..., NSERC, NSF | Excellence in Research: D...NSF| Graduate Research Fellowship Program (GRFP) ,NSERC ,NSF| Excellence in Research: Developing a Robust, Distributed, and Automated Sensing and Control System for Smart AgricultureAnthony, Mark A.; Knorr, Melissa A.; Moore, Jessica A. M.; Simpson, M.; Frey, Serita D.;Soil fungi are key regulators of forest carbon cycling and their responses to global change have effects that ripple throughout ecosystems. Global changes are expected to push many fungi beyond their environmental niches, but there are relatively few studies involving multiple, simultaneous global change factors. Here, we studied soil fungal diversity, community composition, co-occurrence patterns, and decomposition gene responses to 10 years of soil warming and nitrogen addition, alone and in combination. We specifically examined whether there were fungal community characteristics that could explain changes in soil carbon storage and organic matter chemistry in chronically warmed and fertilized soil. We found that fungal communities in warmed soils are less diverse and shift in composition. Warming also favored hyperdominance by a few mycorrhizal fungal species and lowered manganese peroxidase but increased hydrolytic enzyme encoding gene potentials. Nitrogen addition did not significantly affect fungal community composition but, like warming, did reduce fungal diversity and favored overdominance by a unique set of mycorrhizal taxa. Warming alone and in combination with nitrogen addition also reduced negative but increased positive fungal co-occurrence probabilities, promoting species coexistence. Negative fungal co-occurrence was positively correlated to soil carbon content, while the proportion of fungal hydrolytic enzyme encoding genes was negatively correlated with soil carbon content. This may reflect fungal life history trade-offs between competition (e.g., reduced negative co-occurrence) and resource acquisition (e.g., higher abundance of hydrolytic enzyme encoding genes) with implications for carbon storage.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2021License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1679Data sources: Bielefeld Academic Search Engine (BASE)Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.000059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2021License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1679Data sources: Bielefeld Academic Search Engine (BASE)Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.000059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Mar 2023 Sweden, Switzerland, United States, United StatesPublisher:Wiley Funded by:NSF | CAREER: Soil Microbial E..., NSF | Collaborative Research: L..., NSF | LTER: From Microbes to M...NSF| CAREER: Soil Microbial Ecology and Evolution in a Warming World ,NSF| Collaborative Research: LTREB: Soil Warming and Forest Ecosystem Feedbacks to the Climate System ,NSF| LTER: From Microbes to Macrosystems: Understanding the response of ecological systems to global change drivers and their interactionsLuiz A. Domeignoz‐Horta; Grace Pold; Hailey Erb; David Sebag; Eric Verrecchia; Trent Northen; Katherine Louie; Emiley Eloe‐Fadrosh; Christa Pennacchio; Melissa A. Knorr; Serita D. Frey; Jerry M. Melillo; Kristen M. DeAngelis;pmid: 36448874
AbstractMicrobes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils.
SLU publication data... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BY NC NDFull-Text: https://scholars.unh.edu/faculty_pubs/1652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/8357h3g3Data sources: Bielefeld Academic Search Engine (BASE)Serveur académique lausannoisArticle . 2022License: CC BY NC NDData sources: Serveur académique lausannoiseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaZurich Open Repository and ArchiveArticle . 2023License: CC BY NC NDData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BY NC NDFull-Text: https://scholars.unh.edu/faculty_pubs/1652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/8357h3g3Data sources: Bielefeld Academic Search Engine (BASE)Serveur académique lausannoisArticle . 2022License: CC BY NC NDData sources: Serveur académique lausannoiseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaZurich Open Repository and ArchiveArticle . 2023License: CC BY NC NDData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research LT..., NSF | Excellence in Research: D..., NSERCNSF| Collaborative Research LTREB: Soil warming and forest ecosystem feedbacks to the climate system ,NSF| Excellence in Research: Developing a Robust, Distributed, and Automated Sensing and Control System for Smart Agriculture ,NSERCMelissa A. Knorr; A. R. Contosta; E. W. Morrison; T. J. Muratore; M. A. Anthony; I. Stoica; K. M. Geyer; M. J. Simpson; S. D. Frey;pmid: 39317790
Recent observations document that long-term soil warming in a temperate deciduous forest leads to significant soil carbon loss, whereas chronic soil nitrogen enrichment leads to significant soil carbon gain. Most global change experiments like these are single factor, investigating the impacts of one stressor in isolation of others. Because warming and ecosystem nitrogen enrichment are happening concurrently in many parts of the world, we designed a field experiment to test how these two factors, alone and in combination, impact soil carbon cycling. Here, we show that long-term continuous soil warming or nitrogen enrichment when applied alone followed the predicted response, with warming resulting in significant soil carbon loss and nitrogen fertilization tending towards soil carbon gain. The combination treatment showed an unanticipated response, whereby soil respiratory carbon loss was significantly higher than either single factor alone, but without a concomitant decline in soil carbon storage. Observations suggest that when soils are exposed to both factors simultaneously, plant carbon inputs to the soil are enhanced, counterbalancing soil carbon loss and helping maintain soil carbon stocks near control levels. This has implications for both atmospheric CO2 emissions and soil fertility and shows that coupling two important global change drivers results in a distinctive response that was not predicted by the behaviour of the single factors in isolation.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02546-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02546-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Funded by:NSERC, NSF | Collaborative Research: M...NSERC ,NSF| Collaborative Research: MRA: Elucidating Plant and Mycorrhizal Fungal Relationships and Consequences across Space and TimeT. J. Muratore; M. A. Knorr; M. J. Simpson; R. B. Stephens; R. P. Phillips; S. D. Frey;doi: 10.1111/gcb.17530
pmid: 39435521
ABSTRACTRoots contribute a large fraction of CO2 efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2 relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2021Embargo end date: 01 Jan 2021 United States, SwitzerlandPublisher:University of California Press Funded by:NSF | Graduate Research Fellows..., NSERC, NSF | Excellence in Research: D...NSF| Graduate Research Fellowship Program (GRFP) ,NSERC ,NSF| Excellence in Research: Developing a Robust, Distributed, and Automated Sensing and Control System for Smart AgricultureAnthony, Mark A.; Knorr, Melissa A.; Moore, Jessica A. M.; Simpson, M.; Frey, Serita D.;Soil fungi are key regulators of forest carbon cycling and their responses to global change have effects that ripple throughout ecosystems. Global changes are expected to push many fungi beyond their environmental niches, but there are relatively few studies involving multiple, simultaneous global change factors. Here, we studied soil fungal diversity, community composition, co-occurrence patterns, and decomposition gene responses to 10 years of soil warming and nitrogen addition, alone and in combination. We specifically examined whether there were fungal community characteristics that could explain changes in soil carbon storage and organic matter chemistry in chronically warmed and fertilized soil. We found that fungal communities in warmed soils are less diverse and shift in composition. Warming also favored hyperdominance by a few mycorrhizal fungal species and lowered manganese peroxidase but increased hydrolytic enzyme encoding gene potentials. Nitrogen addition did not significantly affect fungal community composition but, like warming, did reduce fungal diversity and favored overdominance by a unique set of mycorrhizal taxa. Warming alone and in combination with nitrogen addition also reduced negative but increased positive fungal co-occurrence probabilities, promoting species coexistence. Negative fungal co-occurrence was positively correlated to soil carbon content, while the proportion of fungal hydrolytic enzyme encoding genes was negatively correlated with soil carbon content. This may reflect fungal life history trade-offs between competition (e.g., reduced negative co-occurrence) and resource acquisition (e.g., higher abundance of hydrolytic enzyme encoding genes) with implications for carbon storage.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2021License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1679Data sources: Bielefeld Academic Search Engine (BASE)Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.000059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2021License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1679Data sources: Bielefeld Academic Search Engine (BASE)Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.000059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Mar 2023 Sweden, Switzerland, United States, United StatesPublisher:Wiley Funded by:NSF | CAREER: Soil Microbial E..., NSF | Collaborative Research: L..., NSF | LTER: From Microbes to M...NSF| CAREER: Soil Microbial Ecology and Evolution in a Warming World ,NSF| Collaborative Research: LTREB: Soil Warming and Forest Ecosystem Feedbacks to the Climate System ,NSF| LTER: From Microbes to Macrosystems: Understanding the response of ecological systems to global change drivers and their interactionsLuiz A. Domeignoz‐Horta; Grace Pold; Hailey Erb; David Sebag; Eric Verrecchia; Trent Northen; Katherine Louie; Emiley Eloe‐Fadrosh; Christa Pennacchio; Melissa A. Knorr; Serita D. Frey; Jerry M. Melillo; Kristen M. DeAngelis;pmid: 36448874
AbstractMicrobes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils.
SLU publication data... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BY NC NDFull-Text: https://scholars.unh.edu/faculty_pubs/1652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/8357h3g3Data sources: Bielefeld Academic Search Engine (BASE)Serveur académique lausannoisArticle . 2022License: CC BY NC NDData sources: Serveur académique lausannoiseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaZurich Open Repository and ArchiveArticle . 2023License: CC BY NC NDData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BY NC NDFull-Text: https://scholars.unh.edu/faculty_pubs/1652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/8357h3g3Data sources: Bielefeld Academic Search Engine (BASE)Serveur académique lausannoisArticle . 2022License: CC BY NC NDData sources: Serveur académique lausannoiseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaZurich Open Repository and ArchiveArticle . 2023License: CC BY NC NDData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu