
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fungal community and functional responses to soil warming are greater than for soil nitrogen enrichment

Soil fungi are key regulators of forest carbon cycling and their responses to global change have effects that ripple throughout ecosystems. Global changes are expected to push many fungi beyond their environmental niches, but there are relatively few studies involving multiple, simultaneous global change factors. Here, we studied soil fungal diversity, community composition, co-occurrence patterns, and decomposition gene responses to 10 years of soil warming and nitrogen addition, alone and in combination. We specifically examined whether there were fungal community characteristics that could explain changes in soil carbon storage and organic matter chemistry in chronically warmed and fertilized soil. We found that fungal communities in warmed soils are less diverse and shift in composition. Warming also favored hyperdominance by a few mycorrhizal fungal species and lowered manganese peroxidase but increased hydrolytic enzyme encoding gene potentials. Nitrogen addition did not significantly affect fungal community composition but, like warming, did reduce fungal diversity and favored overdominance by a unique set of mycorrhizal taxa. Warming alone and in combination with nitrogen addition also reduced negative but increased positive fungal co-occurrence probabilities, promoting species coexistence. Negative fungal co-occurrence was positively correlated to soil carbon content, while the proportion of fungal hydrolytic enzyme encoding genes was negatively correlated with soil carbon content. This may reflect fungal life history trade-offs between competition (e.g., reduced negative co-occurrence) and resource acquisition (e.g., higher abundance of hydrolytic enzyme encoding genes) with implications for carbon storage.
- University of New Hampshire United States
- ETH Zurich Switzerland
- Oak Ridge National Laboratory United States
- Oak Ridge National Laboratory United States
- University of Toronto Canada
Arbuscular mycorrhizae, Fungi, Soil carbon storage, Biogeochemistry, Ectomycorrhizae, Nitrogen deposition, Arbuscular mycorrhizae; Climate change; Ectomycorrhizae; Fungi; Global change; Nitrogen deposition; Soil carbon storage; Soil warming, Climate change, Soil warming, Global change
Arbuscular mycorrhizae, Fungi, Soil carbon storage, Biogeochemistry, Ectomycorrhizae, Nitrogen deposition, Arbuscular mycorrhizae; Climate change; Ectomycorrhizae; Fungi; Global change; Nitrogen deposition; Soil carbon storage; Soil warming, Climate change, Soil warming, Global change
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
