- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Informa UK Limited Klaus Steinbauer; Paul Illmer; Nadine Praeg; Pascal Querner; Manuela Winkler; Katrin Hofmann; Barbara M. Fischer; Barbara M. Fischer; Johannes Schied; Harald Pauli; Andrea Lamprecht;High mountain areas above the alpine zone are, despite the low-temperature conditions, inhabited by evolutionary and functionally differing organism groups. We compared the abundance and species richness of vascular plants, oribatid mites, springtails, spiders, and beetles, as well as bacterial and methanogenic archaeal prokaryotes (only abundance), at 100 m vertical intervals from 2,700���3,400 m in the Central Alps. We hypothesized that the less mobile microarthropods and microorganisms are more determined by and respond in similar ways to soil properties as do vascular plants. In contrast, we expected the more mobile surface-dwelling groups to forage also in places devoid of vegetation and thus to show patterns that deviate from that of vascular plants. Surprisingly, the observed patterns were diametrically opposed to our expectations: soil-living oribatid mites and springtails showed high individual numbers at high elevations, even where vascular plants barely occurred. Springtails also showed a rather constant species richness throughout the entire gradient. In contrast, patterns of surface-dwelling organisms and of archaeal prokaryotes did not differ significantly from vascular plants, because of either comparable climate sensitivity or their dependency on vegetated habitats. This study may serve as a baseline to estimate the risks of biodiversity losses in response to climate change across different biotic ecosystem components and to explore the potential and limitations of vascular plants as proxy for other organism groups that are far more challenging to monitor.
Smithsonian figshare arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2018.1475951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2018.1475951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:Springer Science and Business Media LLC Klaus Steinbauer; Andrea Lamprecht; Philipp Semenchuk; Manuela Winkler; Harald Pauli;AbstractThe largest alpine–nival vegetation permanent plot site in the Alps, the GLORIA mastersite Schrankogel (Tirol, Austria), provided evidence of warming-driven vegetation changes already 10 years after its establishment in 1994. Another decade later, in 2014, substantial compositional changes with increasing ratios of warmth-demanding to cold-adapted species have been found. The current study deals with species-specific responses involved in an ongoing vegetation transformation across the alpine–nival ecotone on Schrankogel by using presence/absence as well as cover data from permanent plots, situated between 2900 and 3400 masl. The number of occupied plots per species remained constant or even increased during the first decade, whereas disappearance events became more frequent during the second one, especially for cold-adapted specialists (subnival–nival species). Remarkably, the latter was accompanied by continued strong losses in cover of all subnival–nival species. These losses were more frequent in plots with a more thermophilous species composition, suggesting an increasing maladaptation of subnival–nival species to warmer habitat conditions and a successive trailing-edge decline. Several species with a distribution centre at lower elevations (alpine–subnival) markedly increased in cover, comparatively more so in colder plots, indicating a leading-edge expansion. Moreover, our findings show an increase in occupied plots and cover of almost all snowbed species, suggesting that areas previously with a too long snowpack period are now becoming suitable snowbed habitats. Vegetation gaps arising from population dieback of cold-adapted species, however, could only be partly filled by advancing species, indicating that species declines have occurred already before the onset of strong competition pressure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00035-019-00230-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00035-019-00230-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustriaPublisher:Springer Science and Business Media LLC Sabine Felkel; Karin Tremetsberger; Dietmar Moser; Juliane C Dohm; Heinz Himmelbauer; Manuela Winkler;Abstract Background Anthropogenic climate change leads to increasing temperatures and altered precipitation and snowmelt patterns, especially in alpine ecosystems. To understand species’ responses to climate change, assessment of genetic structure and diversity is crucial as the basis for the evaluation of migration patterns, genetic adaptation potential as well as the identification of adaptive alleles. Results We studied genetic structure, diversity and genome-environment associations of two snowbed species endemic to the Eastern Alps with a large elevational range, Achillea clusiana Tausch and Campanula pulla L. Genotyping-by-sequencing was employed to assemble loci de novo , call variants and perform population genetic analyses. Populations of either species were distinguishable by mountain, and to some extent by elevation. We found evidence for gene flow between elevations. Results of genome-environment associations suggested similar selective pressures acting on both species, emanating mainly from precipitation and exposition rather than temperature. Conclusions Given their genetic structure and amount of gene flow among populations the two study species are suitable to serve as a model for genetic monitoring of climate change adaptation along an elevation gradient. Consequences of climate change will predominantly manifest via changes in precipitation and, thus, duration of snow cover in the snowbeds and indirectly via shrub encroachment accompanied by increasing shading of snowbeds at lower range margins. Assembling genomes of the study species and studying larger sample sizes and time series will be necessary to functionally characterize and validate the herein identified genomic loci putatively involved in adaptive processes.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2157166/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2157166/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Preprint 2021Embargo end date: 01 Jan 2022 United Kingdom, Norway, United Kingdom, Norway, Italy, United Kingdom, Italy, Italy, Spain, Qatar, United Kingdom, Denmark, Italy, Denmark, Italy, Italy, Germany, Netherlands, Finland, Italy, Sweden, Netherlands, Germany, Netherlands, Spain, Spain, Netherlands, Spain, Italy, Lithuania, Germany, Norway, Spain, Italy, Germany, Norway, Netherlands, Germany, United Kingdom, Italy, United Kingdom, Italy, Netherlands, Switzerland, Netherlands, Spain, Italy, Belgium, Spain, Netherlands, Spain, Lithuania, France, Germany, Sweden, United States, Belgium, Germany, Italy, Italy, Netherlands, Germany, Netherlands, Qatar, United Kingdom, United KingdomPublisher:Wiley Funded by:EC | eLTER PLUS, EC | LEAP-AGRI, ARC | Discovery Early Career Re... +32 projectsEC| eLTER PLUS ,EC| LEAP-AGRI ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,EC| DESIRA ,ANR| ASICS ,SNSF| ICOS-CH Phase 2 ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| SUPER-G ,AKA| Atmosphere and Climate Competence Center (ACCC) ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,UKRI| Climate as a driver of shrub expansion and tundra greening ,UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,EC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| AIAS ,NSERC ,RCN| Effects of herbivory and warming on tundra plant communities ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,EC| AfricanBioServices ,EC| ECLAIRE ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,NWO| Specialists at work: how decomposers break down plant litter ,EC| PERMTHAW ,EC| ICOS ,EC| NICH ,SNSF| How does forest microclimate affect biodiversity dynamics? ,DFG| EarthShape: Earth Surface Shaping by Biota ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,EC| SustainSAHEL ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,ANR| IMPRINT ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEEWinkler, Manuela; Plichta, Roman; Buysse, Pauline; Lohila, Annalea; Spicher, Fabien; Boeckx, Pascal; Wild, Jan; Feigenwinter, Iris; Olejnik, Janusz; Risch, Anita; Khuroo, Anzar; Lynn, Joshua; di Cella, Umberto; Schmidt, Marius; Urbaniak, Marek; Marchesini, Luca; Govaert, Sanne; Uogintas, Domas; Assis, Rafael; Medinets, Volodymyr; Abdalaze, Otar; Varlagin, Andrej; Dolezal, Jiri; Myers, Jonathan; Randall, Krystal; Bauters, Marijn; Jimenez, Juan; Stoll, Stefan; Petraglia, Alessandro; Mazzolari, Ana; Ogaya, Romà; Tyystjärvi, Vilna; Hammerle, Albin; Wipf, Sonja; Lorite, Juan; Fanin, Nicolas; Benavides, Juan; Scholten, Thomas; Yu, Zicheng; Veen, G.; Treier, Urs; Candan, Onur; Bell, Michael; Hörtnagl, Lukas; Siebicke, Lukas; Vives-Ingla, Maria; Eugster, Werner; Grelle, Achim; Stemkovski, Michael; Theurillat, Jean-Paul; Matula, Radim; Dorrepaal, Ellen; Steinbrecher, Rainer; Alatalo, Juha; Fenu, Giuseppe; Arzac, Alberto; Homeier, Jürgen; Porro, Francesco; Robinson, Sharon; Ghosn, Dany; Haugum, Siri; Ziemblińska, Klaudia; Camargo, José; Zhao, Peng; Niittynen, Pekka; Liljebladh, Bengt; Normand, Signe; Dias, Arildo; Larson, Christian; Peichl, Matthias; Collier, Laura; Myers-Smith, Isla; Zong, Shengwei; Kašpar, Vít; Cooper, Elisabeth; Haider, Sylvia; von Oppen, Jonathan; Cutini, Maurizio; Benito-Alonso, José-Luis; Luoto, Miska; Klemedtsson, Leif; Higgens, Rebecca; Zhang, Jian; Speed, James; Nijs, Ivan; Macek, Martin; Steinwandter, Michael; Poyatos, Rafael; Niedrist, Georg; Curasi, Salvatore; Yang, Yan; Dengler, Jürgen; Géron, Charly; de Pablo, Miguel; Xenakis, Georgios; Kreyling, Juergen; Forte, Tai; Bailey, Joseph; Knohl, Alexander; Goulding, Keith; Wilkinson, Matthew; Kljun, Natascha; Roupsard, Olivier; Stiegler, Christian; Verbruggen, Erik; Wingate, Lisa; Lamprecht, Andrea; Hamid, Maroof; Rossi, Graziano; Descombes, Patrice; Hrbacek, Filip; Bjornsdottir, Katrin; Poulenard, Jérôme; Meeussen, Camille; Guénard, Benoit; Venn, Susanna; Dimarco, Romina; Man, Matěj; Scharnweber, Tobias; Chown, Steven; Pio, Casimiro; Way, Robert; Erickson, Todd; Fernández-Pascual, Eduardo; Pușcaș, Mihai; Orsenigo, Simone; Di Musciano, Michele; Enquist, Brian; Newling, Emily; Tagesson, Torbern; Kemppinen, Julia; Serra-Diaz, Josep; Gottschall, Felix; Schuchardt, Max; Pitacco, Andrea; Jump, Alistair; Exton, Dan; Carnicer, Jofre; Aschero, Valeria; Urban, Anastasiya; Daskalova, Gergana; Santos, Cinthya; Goeckede, Mathias; Bruna, Josef; Andrews, Christopher; Jónsdóttir, Ingibjörg; Casanova-Katny, Angélica; Moriana-Armendariz, Mikel; Ewers, Robert; Pärtel, Meelis; Sagot, Clotilde; Herbst, Mathias; De Frenne, Pieter; Milbau, Ann; Gobin, Anne; Alexander, Jake; Kopecký, Martin; Buchmann, Nina; Kotowska, Martyna; Puchalka, Radoslaw; Penuelas, Josep; Gigauri, Khatuna; Prokushkin, Anatoly; Moiseev, Pavel; Jentsch, Anke; Klisz, Marcin; Barrio, Isabel; Ammann, Christof; Panov, Alexey; Van Geel, Maarten; Finckh, Manfred; Vaccari, Francesco; Erschbamer, Brigitta; Backes, Amanda; Robroek, Bjorn; Campoe, Otávio; Ahmadian, Negar; Boike, Julia; Thomas, Haydn; Pastor, Ada; Smith, Stuart; Pauli, Harald; Kollár, Jozef; de Cássia Guimarães Mesquita, Rita; Michaletz, Sean; Fuentes-Lillo, Eduardo; Urban, Josef; Greenwood, Sarah; Lens, Luc; Van de Vondel, Stijn; Vitale, Luca; Remmele, Sabine; Naujokaitis-Lewis, Ilona; Meusburger, Katrin; Cremonese, Edoardo; Barros, Agustina; Bokhorst, Stef; Svátek, Martin; Allonsius, Camille; Høye, Toke;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 10261/358672 , 2066/286285 , 10481/73202 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 10651/64961 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 10017/50911 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794 , 10900/135817
doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 10261/358672 , 2066/286285 , 10481/73202 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 10651/64961 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 10017/50911 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794 , 10900/135817
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAOther literature typeLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsGlobal Change BiologyReview . 2021Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu188 citations 188 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAOther literature typeLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsGlobal Change BiologyReview . 2021Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Austria, NorwayPublisher:Wiley Lamprecht, Andrea; Semenchuk, Philipp; Steinbauer, Klaus; Winkler, Manuela; Pauli, Harald;Summary High mountain ecosystems and their biota are governed by low‐temperature conditions and thus can be used as indicators for climate warming impacts on natural ecosystems, provided that long‐term data exist. We used data from the largest alpine to nival permanent plot site in the Alps, established in the frame of the Global Observation Research Initiative in Alpine Environments (GLORIA) on Schrankogel in the Tyrolean Alps, Austria, in 1994, and resurveyed in 2004 and 2014. Vascular plant species richness per plot increased over the entire period, albeit to a lesser extent in the second decade, because disappearance events increased markedly in the latter period. Although presence/absence data could only marginally explain range shift dynamics, changes in species cover and plant community composition indicate an accelerating transformation towards a more warmth‐demanding and more drought‐adapted vegetation, which is strongest at the lowest, least rugged subsite. Divergent responses of vertical distribution groups of species suggest that direct warming effects, rather than competitive displacement, are the primary causes of the observed patterns. The continued decrease in cryophilic species could imply that trailing edge dynamics proceed more rapidly than successful colonisation, which would favour a period of accelerated species declines.
New Phytologist arrow_drop_down Munin - Open Research ArchiveArticle . 2018 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down Munin - Open Research ArchiveArticle . 2018 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustriaPublisher:Wiley Stefan Dullinger; Siegrun Ertl; Michael Kuttner; Franz Essl; Thomas Mang; Ingrid Kleinbauer; Johannes Wessely; Manuela Winkler; Andreas Gattringer; Michael Leitner; Wolfgang Willner; Niklaus E. Zimmermann; Norbert Sauberer; Dietmar Moser; Karl Hülber;doi: 10.1111/gcb.13232
pmid: 27061825
AbstractCorrelative species distribution models have long been the predominant approach to predict species’ range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well‐known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short‐term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long‐term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so‐called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short‐term climate variability modifies model results nearly as differences in projected long‐term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range‐dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long‐lived species are primarily responsive to long‐term climate averages.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV K. Steinbauer; A. Lamprecht; M. Winkler; V. Di Cecco; V. Fasching; D. Ghosn; A. Maringer; I. Remoundou; M. Suen; A. Stanisci; S. Venn; H. Pauli;High-mountain plant communities are strongly determined by abiotic conditions, especially low temperature, and are therefore susceptible to effects of climate warming. Rising temperatures, however, also lead to increased evapotranspiration, which, together with projected shifts in seasonal precipitation patterns, could lead to prolonged, detrimental water deficiencies. The current study aims at comparing alpine plant communities along elevation and water availability gradients from humid conditions (north-eastern Alps) to a moderate (Central Apennines) and a pronounced dry period during summer (Lefka Ori, Crete) in the Mediterranean area. We do this in order to (1) detect relationships between community-based indices (plant functional leaf and growth traits, thermic vegetation indicator, plant life forms, vegetation cover and diversity) and soil temperature and snow duration and (2) assess if climatic changes have already affected the vegetation, by determining directional changes over time (14-year period; 2001-2015) in these indices in the three regions. Plant community indices responded to decreasing temperatures along the elevation gradient in the NE-Alps and the Apennines, but this elevation effect almost disappeared in the summer-dry mountains of Crete. This suggests a shift from low-temperature to drought-dominated ecological filters. Leaf trait (Leaf Dry Matter Content and Specific Leaf Area) responses changed in direction from the Alps to the Apennines, indicating that drought effects already become discernible at the northern margin of the Mediterranean. Over time, a slight increase in vegetation cover was found in all regions, but thermophilisation occurred only in the NE-Alps and Apennines, accompanied by a decline of cold-adapted cushion plants in the Alps. On Crete, xeromorphic shrubs were increasing in abundance. Although critical biodiversity losses have not yet been observed, an intensified monitoring of combined warming-drought impacts will be required in view of threatened alpine plants that are either locally restricted in the south or weakly adapted to drought in the north.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Italy, Austria, United Kingdom, Italy, Austria, France, ItalyPublisher:Wiley Mihai Pușcaș; Siegrun Ertl; Thomas Kudernatsch; Ottar Michelsen; Harald Pauli; Tudor Ursu; Michael Suen; Michael Gottfried; George Kazakis; Angela Stanisci; Ulf Molau; Robert Kanka; Jan Dick; Joaquín Molero Mesa; Frank T. Breiner; Frank T. Breiner; Doris Huber; Anne O. Syverhuset; Pascal Vittoz; Brigitta Erschbamer; Philippe Choler; Philippe Choler; Christian Bay; Luis Villar; Emmanuel Corcket; Karl Hülber; Rosario G. Gavilán; Jozef Kollár; Martina Petey; Per Larsson; Laszlo Nagy; Andrea Lamprecht; Klaus Steinbauer; Martin Klipp; Jean-Paul Theurillat; Alba Gutiérrez Girón; Maria Laura Carranza; Pavel Moiseev; Manuela Winkler; Maia Akhalkatsi; Peter Unterluggauer; Christian Rixen; Dmitry Moiseev; Rosa Fernández Calzado; Khatuna Gigauri; Umberto Morra di Cella; Martin Mallaun; Graziano Rossi; Anna Maria Fosaa; Dany Ghosn; José Luis Benito Alonso; Tomas Bergström; Marcello Tomaselli;doi: 10.1111/jbi.12835
handle: 11695/57921 , 11571/1132263 , 11381/2839701
AbstractAimIn the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan‐European scale.LocationMountain summits in Europe's alpine life zone.MethodsVascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6‐year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed‐effects and generalised mixed‐effects models, respectively.ResultsTemperature sums were higher in east‐ and south‐facing aspects than in the north‐facing ones, while the west‐facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature.Main conclusionsThermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate‐induced migration processes.
Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:Wiley Helm, Norbert; Chytrý, Kryštof; Hülber, Karl; Moser, Dietmar; Wessely, Johannes; Gattringer, Andreas; Hausharter, Johannes; Pauli, Harald; Winkler, Manuela; Saccone, Patrick; Lamprecht, Andrea; Rutzinger, Martin; Mayr, Andreas; Kollert, Andreas; Dullinger, Stefan;handle: 11353/10.2115954
Abstract Besides environmental sorting, other processes like biotic interactions and dispersal limitation are vital for the assembly of plant communities in high mountains and their re‐assembly under changing climatic conditions. Nevertheless, studies that compare the impact of these factors on plant community assembly above the tree line are largely lacking so far. We analysed occurrence changes in vascular plant communities of 492 permanent 1‐m2 plots in the alpine‐nival ecotone of Mt. Schrankogel, Austrian Alps by comparing resurvey data from 2014 with data from the initial survey in 1994. We combined these data with species inventories from 899 additional plots sampled in 2021 and 2022 across a larger landscape above the tree line covering an elevational range of 1700 m, which we used for fine‐scale habitat suitability modelling. We assessed the relative effects of projected habitat suitability, propagule pressure from surrounding populations and biomass density of neighbours on 1532 colonization and 372 extirpation events of 31 species observed on the permanent plots. We found that all three factors are significantly related to both colonisations and extirpations, with habitat suitability having the strongest, propagule pressure a slightly weaker, and vegetation density the weakest effect. Colonisations can be better explained by the three process proxies than extirpations. Our results indicate a crucial role of dispersal limitation besides the predominant effect of environmental filtering on the (re‐)assembly of the alpine‐nival plant community, while competitive/facilitative effects between plants tend to play a minor role. The strong imprint of nearby source plant populations on colonization/extirpation events suggests that recent plant migrations predominantly occur in small steps. This implies that while the topographically complex alpine terrain offers climatic microrefugia for plants, it may also pose potential barriers, hindering species from following their suitable climatic niches upwards. Synthesis: Besides filtering by environmental conditions dispersal limitation had a strong effect on the observed changes in a local alpine plant community over two decades. Limited dispersal capacities of plant species may counteract the ability of isolated cold areas to effectively shelter high alpine plants from the effects of climate warming.
Journal of Ecology arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Informa UK Limited Klaus Steinbauer; Paul Illmer; Nadine Praeg; Pascal Querner; Manuela Winkler; Katrin Hofmann; Barbara M. Fischer; Barbara M. Fischer; Johannes Schied; Harald Pauli; Andrea Lamprecht;High mountain areas above the alpine zone are, despite the low-temperature conditions, inhabited by evolutionary and functionally differing organism groups. We compared the abundance and species richness of vascular plants, oribatid mites, springtails, spiders, and beetles, as well as bacterial and methanogenic archaeal prokaryotes (only abundance), at 100 m vertical intervals from 2,700���3,400 m in the Central Alps. We hypothesized that the less mobile microarthropods and microorganisms are more determined by and respond in similar ways to soil properties as do vascular plants. In contrast, we expected the more mobile surface-dwelling groups to forage also in places devoid of vegetation and thus to show patterns that deviate from that of vascular plants. Surprisingly, the observed patterns were diametrically opposed to our expectations: soil-living oribatid mites and springtails showed high individual numbers at high elevations, even where vascular plants barely occurred. Springtails also showed a rather constant species richness throughout the entire gradient. In contrast, patterns of surface-dwelling organisms and of archaeal prokaryotes did not differ significantly from vascular plants, because of either comparable climate sensitivity or their dependency on vegetated habitats. This study may serve as a baseline to estimate the risks of biodiversity losses in response to climate change across different biotic ecosystem components and to explore the potential and limitations of vascular plants as proxy for other organism groups that are far more challenging to monitor.
Smithsonian figshare arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2018.1475951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Arctic, Antarctic, and Alpine ResearchArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15230430.2018.1475951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:Springer Science and Business Media LLC Klaus Steinbauer; Andrea Lamprecht; Philipp Semenchuk; Manuela Winkler; Harald Pauli;AbstractThe largest alpine–nival vegetation permanent plot site in the Alps, the GLORIA mastersite Schrankogel (Tirol, Austria), provided evidence of warming-driven vegetation changes already 10 years after its establishment in 1994. Another decade later, in 2014, substantial compositional changes with increasing ratios of warmth-demanding to cold-adapted species have been found. The current study deals with species-specific responses involved in an ongoing vegetation transformation across the alpine–nival ecotone on Schrankogel by using presence/absence as well as cover data from permanent plots, situated between 2900 and 3400 masl. The number of occupied plots per species remained constant or even increased during the first decade, whereas disappearance events became more frequent during the second one, especially for cold-adapted specialists (subnival–nival species). Remarkably, the latter was accompanied by continued strong losses in cover of all subnival–nival species. These losses were more frequent in plots with a more thermophilous species composition, suggesting an increasing maladaptation of subnival–nival species to warmer habitat conditions and a successive trailing-edge decline. Several species with a distribution centre at lower elevations (alpine–subnival) markedly increased in cover, comparatively more so in colder plots, indicating a leading-edge expansion. Moreover, our findings show an increase in occupied plots and cover of almost all snowbed species, suggesting that areas previously with a too long snowpack period are now becoming suitable snowbed habitats. Vegetation gaps arising from population dieback of cold-adapted species, however, could only be partly filled by advancing species, indicating that species declines have occurred already before the onset of strong competition pressure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00035-019-00230-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00035-019-00230-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustriaPublisher:Springer Science and Business Media LLC Sabine Felkel; Karin Tremetsberger; Dietmar Moser; Juliane C Dohm; Heinz Himmelbauer; Manuela Winkler;Abstract Background Anthropogenic climate change leads to increasing temperatures and altered precipitation and snowmelt patterns, especially in alpine ecosystems. To understand species’ responses to climate change, assessment of genetic structure and diversity is crucial as the basis for the evaluation of migration patterns, genetic adaptation potential as well as the identification of adaptive alleles. Results We studied genetic structure, diversity and genome-environment associations of two snowbed species endemic to the Eastern Alps with a large elevational range, Achillea clusiana Tausch and Campanula pulla L. Genotyping-by-sequencing was employed to assemble loci de novo , call variants and perform population genetic analyses. Populations of either species were distinguishable by mountain, and to some extent by elevation. We found evidence for gene flow between elevations. Results of genome-environment associations suggested similar selective pressures acting on both species, emanating mainly from precipitation and exposition rather than temperature. Conclusions Given their genetic structure and amount of gene flow among populations the two study species are suitable to serve as a model for genetic monitoring of climate change adaptation along an elevation gradient. Consequences of climate change will predominantly manifest via changes in precipitation and, thus, duration of snow cover in the snowbeds and indirectly via shrub encroachment accompanied by increasing shading of snowbeds at lower range margins. Assembling genomes of the study species and studying larger sample sizes and time series will be necessary to functionally characterize and validate the herein identified genomic loci putatively involved in adaptive processes.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2157166/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPermanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2023License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2157166/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Preprint 2021Embargo end date: 01 Jan 2022 United Kingdom, Norway, United Kingdom, Norway, Italy, United Kingdom, Italy, Italy, Spain, Qatar, United Kingdom, Denmark, Italy, Denmark, Italy, Italy, Germany, Netherlands, Finland, Italy, Sweden, Netherlands, Germany, Netherlands, Spain, Spain, Netherlands, Spain, Italy, Lithuania, Germany, Norway, Spain, Italy, Germany, Norway, Netherlands, Germany, United Kingdom, Italy, United Kingdom, Italy, Netherlands, Switzerland, Netherlands, Spain, Italy, Belgium, Spain, Netherlands, Spain, Lithuania, France, Germany, Sweden, United States, Belgium, Germany, Italy, Italy, Netherlands, Germany, Netherlands, Qatar, United Kingdom, United KingdomPublisher:Wiley Funded by:EC | eLTER PLUS, EC | LEAP-AGRI, ARC | Discovery Early Career Re... +32 projectsEC| eLTER PLUS ,EC| LEAP-AGRI ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,EC| DESIRA ,ANR| ASICS ,SNSF| ICOS-CH Phase 2 ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| SUPER-G ,AKA| Atmosphere and Climate Competence Center (ACCC) ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,UKRI| Climate as a driver of shrub expansion and tundra greening ,UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,EC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| AIAS ,NSERC ,RCN| Effects of herbivory and warming on tundra plant communities ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,EC| AfricanBioServices ,EC| ECLAIRE ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,NWO| Specialists at work: how decomposers break down plant litter ,EC| PERMTHAW ,EC| ICOS ,EC| NICH ,SNSF| How does forest microclimate affect biodiversity dynamics? ,DFG| EarthShape: Earth Surface Shaping by Biota ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,EC| SustainSAHEL ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,ANR| IMPRINT ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEEWinkler, Manuela; Plichta, Roman; Buysse, Pauline; Lohila, Annalea; Spicher, Fabien; Boeckx, Pascal; Wild, Jan; Feigenwinter, Iris; Olejnik, Janusz; Risch, Anita; Khuroo, Anzar; Lynn, Joshua; di Cella, Umberto; Schmidt, Marius; Urbaniak, Marek; Marchesini, Luca; Govaert, Sanne; Uogintas, Domas; Assis, Rafael; Medinets, Volodymyr; Abdalaze, Otar; Varlagin, Andrej; Dolezal, Jiri; Myers, Jonathan; Randall, Krystal; Bauters, Marijn; Jimenez, Juan; Stoll, Stefan; Petraglia, Alessandro; Mazzolari, Ana; Ogaya, Romà; Tyystjärvi, Vilna; Hammerle, Albin; Wipf, Sonja; Lorite, Juan; Fanin, Nicolas; Benavides, Juan; Scholten, Thomas; Yu, Zicheng; Veen, G.; Treier, Urs; Candan, Onur; Bell, Michael; Hörtnagl, Lukas; Siebicke, Lukas; Vives-Ingla, Maria; Eugster, Werner; Grelle, Achim; Stemkovski, Michael; Theurillat, Jean-Paul; Matula, Radim; Dorrepaal, Ellen; Steinbrecher, Rainer; Alatalo, Juha; Fenu, Giuseppe; Arzac, Alberto; Homeier, Jürgen; Porro, Francesco; Robinson, Sharon; Ghosn, Dany; Haugum, Siri; Ziemblińska, Klaudia; Camargo, José; Zhao, Peng; Niittynen, Pekka; Liljebladh, Bengt; Normand, Signe; Dias, Arildo; Larson, Christian; Peichl, Matthias; Collier, Laura; Myers-Smith, Isla; Zong, Shengwei; Kašpar, Vít; Cooper, Elisabeth; Haider, Sylvia; von Oppen, Jonathan; Cutini, Maurizio; Benito-Alonso, José-Luis; Luoto, Miska; Klemedtsson, Leif; Higgens, Rebecca; Zhang, Jian; Speed, James; Nijs, Ivan; Macek, Martin; Steinwandter, Michael; Poyatos, Rafael; Niedrist, Georg; Curasi, Salvatore; Yang, Yan; Dengler, Jürgen; Géron, Charly; de Pablo, Miguel; Xenakis, Georgios; Kreyling, Juergen; Forte, Tai; Bailey, Joseph; Knohl, Alexander; Goulding, Keith; Wilkinson, Matthew; Kljun, Natascha; Roupsard, Olivier; Stiegler, Christian; Verbruggen, Erik; Wingate, Lisa; Lamprecht, Andrea; Hamid, Maroof; Rossi, Graziano; Descombes, Patrice; Hrbacek, Filip; Bjornsdottir, Katrin; Poulenard, Jérôme; Meeussen, Camille; Guénard, Benoit; Venn, Susanna; Dimarco, Romina; Man, Matěj; Scharnweber, Tobias; Chown, Steven; Pio, Casimiro; Way, Robert; Erickson, Todd; Fernández-Pascual, Eduardo; Pușcaș, Mihai; Orsenigo, Simone; Di Musciano, Michele; Enquist, Brian; Newling, Emily; Tagesson, Torbern; Kemppinen, Julia; Serra-Diaz, Josep; Gottschall, Felix; Schuchardt, Max; Pitacco, Andrea; Jump, Alistair; Exton, Dan; Carnicer, Jofre; Aschero, Valeria; Urban, Anastasiya; Daskalova, Gergana; Santos, Cinthya; Goeckede, Mathias; Bruna, Josef; Andrews, Christopher; Jónsdóttir, Ingibjörg; Casanova-Katny, Angélica; Moriana-Armendariz, Mikel; Ewers, Robert; Pärtel, Meelis; Sagot, Clotilde; Herbst, Mathias; De Frenne, Pieter; Milbau, Ann; Gobin, Anne; Alexander, Jake; Kopecký, Martin; Buchmann, Nina; Kotowska, Martyna; Puchalka, Radoslaw; Penuelas, Josep; Gigauri, Khatuna; Prokushkin, Anatoly; Moiseev, Pavel; Jentsch, Anke; Klisz, Marcin; Barrio, Isabel; Ammann, Christof; Panov, Alexey; Van Geel, Maarten; Finckh, Manfred; Vaccari, Francesco; Erschbamer, Brigitta; Backes, Amanda; Robroek, Bjorn; Campoe, Otávio; Ahmadian, Negar; Boike, Julia; Thomas, Haydn; Pastor, Ada; Smith, Stuart; Pauli, Harald; Kollár, Jozef; de Cássia Guimarães Mesquita, Rita; Michaletz, Sean; Fuentes-Lillo, Eduardo; Urban, Josef; Greenwood, Sarah; Lens, Luc; Van de Vondel, Stijn; Vitale, Luca; Remmele, Sabine; Naujokaitis-Lewis, Ilona; Meusburger, Katrin; Cremonese, Edoardo; Barros, Agustina; Bokhorst, Stef; Svátek, Martin; Allonsius, Camille; Høye, Toke;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 10261/358672 , 2066/286285 , 10481/73202 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 10651/64961 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 10017/50911 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794 , 10900/135817
doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 10261/358672 , 2066/286285 , 10481/73202 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 10651/64961 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 10017/50911 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794 , 10900/135817
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAOther literature typeLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsGlobal Change BiologyReview . 2021Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu188 citations 188 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAOther literature typeLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsGlobal Change BiologyReview . 2021Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Austria, NorwayPublisher:Wiley Lamprecht, Andrea; Semenchuk, Philipp; Steinbauer, Klaus; Winkler, Manuela; Pauli, Harald;Summary High mountain ecosystems and their biota are governed by low‐temperature conditions and thus can be used as indicators for climate warming impacts on natural ecosystems, provided that long‐term data exist. We used data from the largest alpine to nival permanent plot site in the Alps, established in the frame of the Global Observation Research Initiative in Alpine Environments (GLORIA) on Schrankogel in the Tyrolean Alps, Austria, in 1994, and resurveyed in 2004 and 2014. Vascular plant species richness per plot increased over the entire period, albeit to a lesser extent in the second decade, because disappearance events increased markedly in the latter period. Although presence/absence data could only marginally explain range shift dynamics, changes in species cover and plant community composition indicate an accelerating transformation towards a more warmth‐demanding and more drought‐adapted vegetation, which is strongest at the lowest, least rugged subsite. Divergent responses of vertical distribution groups of species suggest that direct warming effects, rather than competitive displacement, are the primary causes of the observed patterns. The continued decrease in cryophilic species could imply that trailing edge dynamics proceed more rapidly than successful colonisation, which would favour a period of accelerated species declines.
New Phytologist arrow_drop_down Munin - Open Research ArchiveArticle . 2018 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down Munin - Open Research ArchiveArticle . 2018 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustriaPublisher:Wiley Stefan Dullinger; Siegrun Ertl; Michael Kuttner; Franz Essl; Thomas Mang; Ingrid Kleinbauer; Johannes Wessely; Manuela Winkler; Andreas Gattringer; Michael Leitner; Wolfgang Willner; Niklaus E. Zimmermann; Norbert Sauberer; Dietmar Moser; Karl Hülber;doi: 10.1111/gcb.13232
pmid: 27061825
AbstractCorrelative species distribution models have long been the predominant approach to predict species’ range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well‐known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short‐term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long‐term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so‐called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short‐term climate variability modifies model results nearly as differences in projected long‐term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range‐dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long‐lived species are primarily responsive to long‐term climate averages.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV K. Steinbauer; A. Lamprecht; M. Winkler; V. Di Cecco; V. Fasching; D. Ghosn; A. Maringer; I. Remoundou; M. Suen; A. Stanisci; S. Venn; H. Pauli;High-mountain plant communities are strongly determined by abiotic conditions, especially low temperature, and are therefore susceptible to effects of climate warming. Rising temperatures, however, also lead to increased evapotranspiration, which, together with projected shifts in seasonal precipitation patterns, could lead to prolonged, detrimental water deficiencies. The current study aims at comparing alpine plant communities along elevation and water availability gradients from humid conditions (north-eastern Alps) to a moderate (Central Apennines) and a pronounced dry period during summer (Lefka Ori, Crete) in the Mediterranean area. We do this in order to (1) detect relationships between community-based indices (plant functional leaf and growth traits, thermic vegetation indicator, plant life forms, vegetation cover and diversity) and soil temperature and snow duration and (2) assess if climatic changes have already affected the vegetation, by determining directional changes over time (14-year period; 2001-2015) in these indices in the three regions. Plant community indices responded to decreasing temperatures along the elevation gradient in the NE-Alps and the Apennines, but this elevation effect almost disappeared in the summer-dry mountains of Crete. This suggests a shift from low-temperature to drought-dominated ecological filters. Leaf trait (Leaf Dry Matter Content and Specific Leaf Area) responses changed in direction from the Alps to the Apennines, indicating that drought effects already become discernible at the northern margin of the Mediterranean. Over time, a slight increase in vegetation cover was found in all regions, but thermophilisation occurred only in the NE-Alps and Apennines, accompanied by a decline of cold-adapted cushion plants in the Alps. On Crete, xeromorphic shrubs were increasing in abundance. Although critical biodiversity losses have not yet been observed, an intensified monitoring of combined warming-drought impacts will be required in view of threatened alpine plants that are either locally restricted in the south or weakly adapted to drought in the north.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.154541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Italy, Austria, United Kingdom, Italy, Austria, France, ItalyPublisher:Wiley Mihai Pușcaș; Siegrun Ertl; Thomas Kudernatsch; Ottar Michelsen; Harald Pauli; Tudor Ursu; Michael Suen; Michael Gottfried; George Kazakis; Angela Stanisci; Ulf Molau; Robert Kanka; Jan Dick; Joaquín Molero Mesa; Frank T. Breiner; Frank T. Breiner; Doris Huber; Anne O. Syverhuset; Pascal Vittoz; Brigitta Erschbamer; Philippe Choler; Philippe Choler; Christian Bay; Luis Villar; Emmanuel Corcket; Karl Hülber; Rosario G. Gavilán; Jozef Kollár; Martina Petey; Per Larsson; Laszlo Nagy; Andrea Lamprecht; Klaus Steinbauer; Martin Klipp; Jean-Paul Theurillat; Alba Gutiérrez Girón; Maria Laura Carranza; Pavel Moiseev; Manuela Winkler; Maia Akhalkatsi; Peter Unterluggauer; Christian Rixen; Dmitry Moiseev; Rosa Fernández Calzado; Khatuna Gigauri; Umberto Morra di Cella; Martin Mallaun; Graziano Rossi; Anna Maria Fosaa; Dany Ghosn; José Luis Benito Alonso; Tomas Bergström; Marcello Tomaselli;doi: 10.1111/jbi.12835
handle: 11695/57921 , 11571/1132263 , 11381/2839701
AbstractAimIn the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan‐European scale.LocationMountain summits in Europe's alpine life zone.MethodsVascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6‐year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed‐effects and generalised mixed‐effects models, respectively.ResultsTemperature sums were higher in east‐ and south‐facing aspects than in the north‐facing ones, while the west‐facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature.Main conclusionsThermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate‐induced migration processes.
Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:Wiley Helm, Norbert; Chytrý, Kryštof; Hülber, Karl; Moser, Dietmar; Wessely, Johannes; Gattringer, Andreas; Hausharter, Johannes; Pauli, Harald; Winkler, Manuela; Saccone, Patrick; Lamprecht, Andrea; Rutzinger, Martin; Mayr, Andreas; Kollert, Andreas; Dullinger, Stefan;handle: 11353/10.2115954
Abstract Besides environmental sorting, other processes like biotic interactions and dispersal limitation are vital for the assembly of plant communities in high mountains and their re‐assembly under changing climatic conditions. Nevertheless, studies that compare the impact of these factors on plant community assembly above the tree line are largely lacking so far. We analysed occurrence changes in vascular plant communities of 492 permanent 1‐m2 plots in the alpine‐nival ecotone of Mt. Schrankogel, Austrian Alps by comparing resurvey data from 2014 with data from the initial survey in 1994. We combined these data with species inventories from 899 additional plots sampled in 2021 and 2022 across a larger landscape above the tree line covering an elevational range of 1700 m, which we used for fine‐scale habitat suitability modelling. We assessed the relative effects of projected habitat suitability, propagule pressure from surrounding populations and biomass density of neighbours on 1532 colonization and 372 extirpation events of 31 species observed on the permanent plots. We found that all three factors are significantly related to both colonisations and extirpations, with habitat suitability having the strongest, propagule pressure a slightly weaker, and vegetation density the weakest effect. Colonisations can be better explained by the three process proxies than extirpations. Our results indicate a crucial role of dispersal limitation besides the predominant effect of environmental filtering on the (re‐)assembly of the alpine‐nival plant community, while competitive/facilitative effects between plants tend to play a minor role. The strong imprint of nearby source plant populations on colonization/extirpation events suggests that recent plant migrations predominantly occur in small steps. This implies that while the topographically complex alpine terrain offers climatic microrefugia for plants, it may also pose potential barriers, hindering species from following their suitable climatic niches upwards. Synthesis: Besides filtering by environmental conditions dispersal limitation had a strong effect on the observed changes in a local alpine plant community over two decades. Limited dispersal capacities of plant species may counteract the ability of isolated cold areas to effectively shelter high alpine plants from the effects of climate warming.
Journal of Ecology arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2024License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.14401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu