- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:MDPI AG Authors: Yunhe Yu; Aditya Shekhar; Gautham Ram Chandra Mouli; Pavol Bauer;doi: 10.3390/en15228722
This paper benchmarks the performance of three practical electric vehicle (EV) charging scheduling methods relative to uncontrolled charging (UNC) in low-voltage (LV) distribution grids. The charging methods compared are the voltage droop method (VDM), price-signal-based method (PSM) and average rate method (ARM). Trade-offs associated with the grid performance, charging demand fulfilment and economic benefits are explored for three different grid types and four increasing levels of EV penetration for summer and winter. This study was carried out using grid simulations of six existing Dutch distribution grids, and the EV charging demand was generated based on 1.5 M EV charging sessions; therefore, the findings of this research are relevant for actual case studies. The results suggest that the PSM can be a preferred strategy for achieving a charging cost reduction of 6–11% when the grid performance is not a bottleneck for the given EV penetration. However, it can lead to an increased peak loading of the grid under certain operational conditions, resulting in a charging energy deficiency ratio of 4–8%. The VDM should be preferred if user information on the parking time and energy demand is not consistently available, and if the mitigation of grid congestion is critical. However, both unfinished charging events and charging costs increase with the VDM. The ARM provides the best balance in the trade-offs associated with the mitigation of grid congestion and price reduction, as well as charging completion. This research provides a perception of how to select the most appropriate practical charging strategy based on the given system requirements. The outcome of this study can also serve as a benchmark for advanced smart charging algorithm evaluation in the future.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8722/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 8 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8722/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Damiano Dreucci; Yunhe Yu; Gautham Ram Chandra Mouli; Aditya Shekhar; Pavol Bauer;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2025.125417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2025.125417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021 NetherlandsPublisher:IEEE Authors: Wagh, Saumitra (author); Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); +1 AuthorsWagh, Saumitra (author); Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author);Mass deployment of Electric Vehicles (EVs) can improve the loading characteristics of low voltage distribution grids with high Photovoltaic (PV) penetration. This impact is investigated in the paper from two point of views, namely, the EV charger type and the EV penetration level. Based on the measured usage data for home, public and semi-public EV chargers, it is highlighted that the ratio of the number of these charger types can influence the grid level impact of PV penetration. Using Monte-Carlo method with aggregated power balance model, it is suggested that the increase in percentage of public and semi-public chargers relative to home chargers can improve self-consumption of PV energy in the grid, thereby reducing the power mismatch due to excess local generation. A PowerFactory based simulation with real measurement based data on real German distribution grids reveals that the grids have no risk of congestion at all with 80% EV penetration, allowing for a possibility even higher EV penetration in the future. Furthermore, with the considered uncontrolled EV charging, it is observed that the grids experience reverse power flows due to excess PV generation. This excess PV energy reduces by about 5% with high EV penetration, indicating a future potential for targeted smart charging application for improving these benchmarked results.
https://repository.t... arrow_drop_down https://doi.org/10.1109/itec51...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec51675.2021.9490054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 6 Powered bymore_vert https://repository.t... arrow_drop_down https://doi.org/10.1109/itec51...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec51675.2021.9490054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Yunhe Yu; David Reihs; Saumitra Wagh; Aditya Shekhar; Daniel Stahleder; Gautham Ram Chandra Mouli; Felix Lehfuss; Pavol Bauer;In this paper, the impact of Electric Vehicle (EV) uncontrolled charging with four levels of EV penetration in overall 21 real low voltage distribution grids in two seasons are analysed. The employed real grid data is provided by distribution system operators from three European countries: Austria, Germany and the Netherlands. At least six grids in each country were considered and they are categorised into three types, namely rural grids, suburban grids and urban grids. The EV charging data used in this study is based on real measurements or surveys. The seasonal and the weekday-weekend factors are also considered in the EV charging impact research. Three key congestion indicators, the transformer loading, line loading and node voltage as well as several other evaluation indexes are studied. The results reveal that the majority of the simulated grids had no or minor moments of mild overloading while the rest grids had critical issues. Among all the grids, suburban grids are most vulnerable to massive EV integration. Out of the evaluated grids, those who are located in Germany have the highest redundancy for high EV penetration accommodation. Overall, the impact of uncontrolled EV charging depends on the combination of EV charging demand as well as the grid inherent features.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3140162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3140162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020 NetherlandsPublisher:IEEE Authors: Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author); +2 AuthorsYu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author); Refa, Nazir (author); Bernards, Raoul (author);This study aims to quantity the impact of uncontrolled charging of Electric Vehicles (EVs) on the low voltage distribution networks with increasing EV penetration levels. For this objective, key indicators are developed to show the magnitude, scale and duration of the impact on the distribution network. The disseminated results are based on the case study with actual data from the existing distribution networks. The findings of this paper can serve as a benchmark for determining the potential of smart EV charging algorithms and/or the extent of necessary infrastructural reinforcement that the grid operators must incorporate.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/itec48...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec48692.2020.9161574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 25 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/itec48...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec48692.2020.9161574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:NWO | New Energy and mobility O...NWO| New Energy and mobility Outlook for the Netherlands (NEON)Authors: Nikolaos Damianakis; Gautham Ram Chandra Mouli; Pavol Bauer; Yunhe Yu;Low Carbon Technologies (LCTs), such as Photovoltaics (PVs), Electric Vehicles (EVs), and Heat Pumps (HPs), are expected to cause a huge electric load in future distribution grids. This paper investigates the grid impact in terms of over-loading and nodal voltage deviations in different distribution grids due to increasing LCT penetrations. The major objectives are the identification of the most severe LCT, grid impact issue, seasonal effect, and vulnerable distributional area, considering the physical models of the LCTs. It is concluded that Winter is the most hazardous for the future grid impact, characterized by nearly 3 times higher over-loading and 2.5 times higher voltage deviations during high HP penetrations, while suburban areas are the most vulnerable. Moreover, while HPs seem to have, in general, a greater impact compared to EVs, EVs cause more prolonged violations. While this work follows a bottom-up approach, using detailed physical models, aggregated national data has also been acquired, which is often used by top-down approaches. Different grid impact issues have been compared for the two approaches in terms of magnitude and duration. While bottom-up approaches generate more pessimistic results regarding the magnitude of the violations, results about the duration of the violations can be contradictory. DC systems, Energy conversion & Storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Costa Rica, NetherlandsPublisher:MDPI AG Yunhe Yu; Nishant Narayan; Victor Vega-Garita; Jelena Popovic-Gerber; Zian Qin; Marnix Wagemaker; Pavol Bauer; Miro Zeman;doi: 10.3390/en11092305
handle: 10669/90458
The past few years have seen strong growth of solar-based off-grid energy solutions such as Solar Home Systems (SHS) as a means to ameliorate the grave problem of energy poverty. Battery storage is an essential component of SHS. An accurate battery model can play a vital role in SHS design. Knowing the dynamic behaviour of the battery is important for the battery sizing and estimating the battery behaviour for the chosen application at the system design stage. In this paper, an accurate cell level dynamic battery model based on the electrical equivalent circuit is constructed for two battery technologies: the valve regulated lead–acid (VRLA) battery and the LiFePO 4 (LFP) battery. Series of experiments were performed to obtain the relevant model parameters. This model is built for low C-rate applications (lower than 0.5 C-rate) as expected in SHS. The model considers the non-linear relation between the state of charge ( S O C ) and open circuit voltage ( V OC ) for both technologies. Additionally, the equivalent electrical circuit model for the VRLA battery was improved by including a 2nd order RC pair. The simulated model differs from the experimentally obtained result by less than 2%. This cell level battery model can be potentially scaled to battery pack level with flexible capacity, making the dynamic battery model a useful tool in SHS design.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2305/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 7 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2305/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:MDPI AG Authors: Yunhe Yu; Aditya Shekhar; Gautham Ram Chandra Mouli; Pavol Bauer;doi: 10.3390/en15228722
This paper benchmarks the performance of three practical electric vehicle (EV) charging scheduling methods relative to uncontrolled charging (UNC) in low-voltage (LV) distribution grids. The charging methods compared are the voltage droop method (VDM), price-signal-based method (PSM) and average rate method (ARM). Trade-offs associated with the grid performance, charging demand fulfilment and economic benefits are explored for three different grid types and four increasing levels of EV penetration for summer and winter. This study was carried out using grid simulations of six existing Dutch distribution grids, and the EV charging demand was generated based on 1.5 M EV charging sessions; therefore, the findings of this research are relevant for actual case studies. The results suggest that the PSM can be a preferred strategy for achieving a charging cost reduction of 6–11% when the grid performance is not a bottleneck for the given EV penetration. However, it can lead to an increased peak loading of the grid under certain operational conditions, resulting in a charging energy deficiency ratio of 4–8%. The VDM should be preferred if user information on the parking time and energy demand is not consistently available, and if the mitigation of grid congestion is critical. However, both unfinished charging events and charging costs increase with the VDM. The ARM provides the best balance in the trade-offs associated with the mitigation of grid congestion and price reduction, as well as charging completion. This research provides a perception of how to select the most appropriate practical charging strategy based on the given system requirements. The outcome of this study can also serve as a benchmark for advanced smart charging algorithm evaluation in the future.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8722/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 8 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8722/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Damiano Dreucci; Yunhe Yu; Gautham Ram Chandra Mouli; Aditya Shekhar; Pavol Bauer;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2025.125417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2025.125417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021 NetherlandsPublisher:IEEE Authors: Wagh, Saumitra (author); Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); +1 AuthorsWagh, Saumitra (author); Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author);Mass deployment of Electric Vehicles (EVs) can improve the loading characteristics of low voltage distribution grids with high Photovoltaic (PV) penetration. This impact is investigated in the paper from two point of views, namely, the EV charger type and the EV penetration level. Based on the measured usage data for home, public and semi-public EV chargers, it is highlighted that the ratio of the number of these charger types can influence the grid level impact of PV penetration. Using Monte-Carlo method with aggregated power balance model, it is suggested that the increase in percentage of public and semi-public chargers relative to home chargers can improve self-consumption of PV energy in the grid, thereby reducing the power mismatch due to excess local generation. A PowerFactory based simulation with real measurement based data on real German distribution grids reveals that the grids have no risk of congestion at all with 80% EV penetration, allowing for a possibility even higher EV penetration in the future. Furthermore, with the considered uncontrolled EV charging, it is observed that the grids experience reverse power flows due to excess PV generation. This excess PV energy reduces by about 5% with high EV penetration, indicating a future potential for targeted smart charging application for improving these benchmarked results.
https://repository.t... arrow_drop_down https://doi.org/10.1109/itec51...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec51675.2021.9490054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 6 Powered bymore_vert https://repository.t... arrow_drop_down https://doi.org/10.1109/itec51...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec51675.2021.9490054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Yunhe Yu; David Reihs; Saumitra Wagh; Aditya Shekhar; Daniel Stahleder; Gautham Ram Chandra Mouli; Felix Lehfuss; Pavol Bauer;In this paper, the impact of Electric Vehicle (EV) uncontrolled charging with four levels of EV penetration in overall 21 real low voltage distribution grids in two seasons are analysed. The employed real grid data is provided by distribution system operators from three European countries: Austria, Germany and the Netherlands. At least six grids in each country were considered and they are categorised into three types, namely rural grids, suburban grids and urban grids. The EV charging data used in this study is based on real measurements or surveys. The seasonal and the weekday-weekend factors are also considered in the EV charging impact research. Three key congestion indicators, the transformer loading, line loading and node voltage as well as several other evaluation indexes are studied. The results reveal that the majority of the simulated grids had no or minor moments of mild overloading while the rest grids had critical issues. Among all the grids, suburban grids are most vulnerable to massive EV integration. Out of the evaluated grids, those who are located in Germany have the highest redundancy for high EV penetration accommodation. Overall, the impact of uncontrolled EV charging depends on the combination of EV charging demand as well as the grid inherent features.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3140162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3140162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020 NetherlandsPublisher:IEEE Authors: Yu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author); +2 AuthorsYu, Y. (author); Shekhar, A. (author); Chandra Mouli, G.R. (author); Bauer, P. (author); Refa, Nazir (author); Bernards, Raoul (author);This study aims to quantity the impact of uncontrolled charging of Electric Vehicles (EVs) on the low voltage distribution networks with increasing EV penetration levels. For this objective, key indicators are developed to show the magnitude, scale and duration of the impact on the distribution network. The disseminated results are based on the case study with actual data from the existing distribution networks. The findings of this paper can serve as a benchmark for determining the potential of smart EV charging algorithms and/or the extent of necessary infrastructural reinforcement that the grid operators must incorporate.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/itec48...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec48692.2020.9161574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 25 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/itec48...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/itec48692.2020.9161574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:NWO | New Energy and mobility O...NWO| New Energy and mobility Outlook for the Netherlands (NEON)Authors: Nikolaos Damianakis; Gautham Ram Chandra Mouli; Pavol Bauer; Yunhe Yu;Low Carbon Technologies (LCTs), such as Photovoltaics (PVs), Electric Vehicles (EVs), and Heat Pumps (HPs), are expected to cause a huge electric load in future distribution grids. This paper investigates the grid impact in terms of over-loading and nodal voltage deviations in different distribution grids due to increasing LCT penetrations. The major objectives are the identification of the most severe LCT, grid impact issue, seasonal effect, and vulnerable distributional area, considering the physical models of the LCTs. It is concluded that Winter is the most hazardous for the future grid impact, characterized by nearly 3 times higher over-loading and 2.5 times higher voltage deviations during high HP penetrations, while suburban areas are the most vulnerable. Moreover, while HPs seem to have, in general, a greater impact compared to EVs, EVs cause more prolonged violations. While this work follows a bottom-up approach, using detailed physical models, aggregated national data has also been acquired, which is often used by top-down approaches. Different grid impact issues have been compared for the two approaches in terms of magnitude and duration. While bottom-up approaches generate more pessimistic results regarding the magnitude of the violations, results about the duration of the violations can be contradictory. DC systems, Energy conversion & Storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Costa Rica, NetherlandsPublisher:MDPI AG Yunhe Yu; Nishant Narayan; Victor Vega-Garita; Jelena Popovic-Gerber; Zian Qin; Marnix Wagemaker; Pavol Bauer; Miro Zeman;doi: 10.3390/en11092305
handle: 10669/90458
The past few years have seen strong growth of solar-based off-grid energy solutions such as Solar Home Systems (SHS) as a means to ameliorate the grave problem of energy poverty. Battery storage is an essential component of SHS. An accurate battery model can play a vital role in SHS design. Knowing the dynamic behaviour of the battery is important for the battery sizing and estimating the battery behaviour for the chosen application at the system design stage. In this paper, an accurate cell level dynamic battery model based on the electrical equivalent circuit is constructed for two battery technologies: the valve regulated lead–acid (VRLA) battery and the LiFePO 4 (LFP) battery. Series of experiments were performed to obtain the relevant model parameters. This model is built for low C-rate applications (lower than 0.5 C-rate) as expected in SHS. The model considers the non-linear relation between the state of charge ( S O C ) and open circuit voltage ( V OC ) for both technologies. Additionally, the equivalent electrical circuit model for the VRLA battery was improved by including a 2nd order RC pair. The simulated model differs from the experimentally obtained result by less than 2%. This cell level battery model can be potentially scaled to battery pack level with flexible capacity, making the dynamic battery model a useful tool in SHS design.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2305/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 7 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2305/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu