- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Authors:Arabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREBehzadi, Amirmohammad;
Alsagri, Ali Sulaiman;Behzadi, Amirmohammad
Behzadi, Amirmohammad in OpenAIREIn the present work, a novel hybrid solar-based smart building energy system is introduced and studied. The system comprises innovative photovoltaic-thermal-cooling (PVTC) panels integrated with hot and cold storages with two-way interaction with electricity, heat, and cooling networks (if any). The proposed system is compared with PV-based systems integrated with battery and heat pump for a case study complex building in Aarhus, Denmark. The comparison is conducted by evaluating the performance and economic indicators and investigating the effect of significant parameters on each scenario via a parametric study. Furthermore, the optimal operating conditions and sizing of the proposed system are determined using the genetic algorithm method considering initial cost and traded energy with local energy networks as the objective functions. The comparison results show that the proposed solution is the most cost-effective scenario with the lowest initial cost of about 457,000 $ and a payback period of 6.6 years. This is mainly due to the simultaneous interaction with electricity/heat/cooling networks as well as the elimination of the battery and the heat pump, which are offered by the proposed scenario. It is shown that, in comparison to PV panels, the PVTC can produce 328.7 MWh and 125.6 MWh extra heat and cooling annually. The scatter distribution of significant parameters shows that the panel area and heat storage capacity are not sensitive parameters, and keeping the cold storage capacity at the lower bound is a techno-economically better option.
Aalborg University R... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Authors:Arabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREBehzadi, Amirmohammad;
Alsagri, Ali Sulaiman;Behzadi, Amirmohammad
Behzadi, Amirmohammad in OpenAIREIn the present work, a novel hybrid solar-based smart building energy system is introduced and studied. The system comprises innovative photovoltaic-thermal-cooling (PVTC) panels integrated with hot and cold storages with two-way interaction with electricity, heat, and cooling networks (if any). The proposed system is compared with PV-based systems integrated with battery and heat pump for a case study complex building in Aarhus, Denmark. The comparison is conducted by evaluating the performance and economic indicators and investigating the effect of significant parameters on each scenario via a parametric study. Furthermore, the optimal operating conditions and sizing of the proposed system are determined using the genetic algorithm method considering initial cost and traded energy with local energy networks as the objective functions. The comparison results show that the proposed solution is the most cost-effective scenario with the lowest initial cost of about 457,000 $ and a payback period of 6.6 years. This is mainly due to the simultaneous interaction with electricity/heat/cooling networks as well as the elimination of the battery and the heat pump, which are offered by the proposed scenario. It is shown that, in comparison to PV panels, the PVTC can produce 328.7 MWh and 125.6 MWh extra heat and cooling annually. The scatter distribution of significant parameters shows that the panel area and heat storage capacity are not sensitive parameters, and keeping the cold storage capacity at the lower bound is a techno-economically better option.
Aalborg University R... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Authors:Sadi, M.;
Chakarvarty, K.;Sadi, M.
Sadi, M. in OpenAIREBehzadi, A.;
Behzadi, A.
Behzadi, A. in OpenAIREArabkoohsar, A.;
Arabkoohsar, A.
Arabkoohsar, A. in OpenAIREIn the present study, a novel design of large-scale biomass-based heat-driven building cooling system is proposed and investigated for different regions of India. The study is enriched by a thorough benchmarking analysis of various scenarios (24 scenarios in total) for assessing the influence of different types of biomass, various configurations of the cooling system, and different biomass heater layouts on thermodynamic, economic, and environmental aspects of the proposed solution. For this, developing a MATLAB code, hourly, monthly, and annual comparisons are made to ascertain the best scenario from different aspects. The economic investigations reveal the superiority of the scenario comprising a specific design of biomass-heater using Prosopis and double-effect chiller with the lowest levelized cost of cooling (LCOC) of 0.031 $/kWh. The integration of a double-effect chiller with this heater using wood chips leads to the lowest emission index of 0.19 kg/kWh. The results further demonstrate that the LCOC is highly sensitive to the fluctuation of the cost of the biomass type, which is a function of availability in different regions of India. Therefore, the study is a secure reference indicating which scenario would result in the best techno-economic-environmental performance among all possibilities in different areas of the country.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Authors:Sadi, M.;
Chakarvarty, K.;Sadi, M.
Sadi, M. in OpenAIREBehzadi, A.;
Behzadi, A.
Behzadi, A. in OpenAIREArabkoohsar, A.;
Arabkoohsar, A.
Arabkoohsar, A. in OpenAIREIn the present study, a novel design of large-scale biomass-based heat-driven building cooling system is proposed and investigated for different regions of India. The study is enriched by a thorough benchmarking analysis of various scenarios (24 scenarios in total) for assessing the influence of different types of biomass, various configurations of the cooling system, and different biomass heater layouts on thermodynamic, economic, and environmental aspects of the proposed solution. For this, developing a MATLAB code, hourly, monthly, and annual comparisons are made to ascertain the best scenario from different aspects. The economic investigations reveal the superiority of the scenario comprising a specific design of biomass-heater using Prosopis and double-effect chiller with the lowest levelized cost of cooling (LCOC) of 0.031 $/kWh. The integration of a double-effect chiller with this heater using wood chips leads to the lowest emission index of 0.19 kg/kWh. The results further demonstrate that the LCOC is highly sensitive to the fluctuation of the cost of the biomass type, which is a function of availability in different regions of India. Therefore, the study is a secure reference indicating which scenario would result in the best techno-economic-environmental performance among all possibilities in different areas of the country.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Springer Science and Business Media LLC Authors: Amini Hajibashi, Farnaz;Arabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREBabaelahi, Mojtaba;
Babaelahi, Mojtaba
Babaelahi, Mojtaba in OpenAIREOne of the critical issues in the design and optimization of power systems is considering the performance indices and safety problems simultaneously. In this paper, a new optimization procedure based on energy, exergy, and risk analyses of a solar-driven combined gas/steam cycle power plant has been proposed and investigated. In the first step, the first and second laws of thermodynamics are used to evaluate the thermal and exergetic efficiencies of the plant. For this, precise modeling of the parabolic solar collectors and all the other components of the system has been performed. For the validation of thermodynamic modeling, the ThermoFlex simulation tool is employed. Then, the risk identification process has been performed considering the jet fire, the jet of combustion gas, and over-pressure as the main sources of risk in the power plant. To quantify each of these risks, appropriate correlations are presented, and the risk values are calculated as a function of the operational parameters of the cycle. In the next step, different multi-objective optimizations have been performed to achieve a configuration that has the highest efficiency and lowest risk. The results of optimizations show a good improvement in the thermodynamic efficiencies and risks of the system by 10.7%, 10.2%, and 1.21%, respectively. In the end, the dynamic analysis of the considered power plant is performed for optimal and base-case design.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10221-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10221-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Springer Science and Business Media LLC Authors: Amini Hajibashi, Farnaz;Arabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREBabaelahi, Mojtaba;
Babaelahi, Mojtaba
Babaelahi, Mojtaba in OpenAIREOne of the critical issues in the design and optimization of power systems is considering the performance indices and safety problems simultaneously. In this paper, a new optimization procedure based on energy, exergy, and risk analyses of a solar-driven combined gas/steam cycle power plant has been proposed and investigated. In the first step, the first and second laws of thermodynamics are used to evaluate the thermal and exergetic efficiencies of the plant. For this, precise modeling of the parabolic solar collectors and all the other components of the system has been performed. For the validation of thermodynamic modeling, the ThermoFlex simulation tool is employed. Then, the risk identification process has been performed considering the jet fire, the jet of combustion gas, and over-pressure as the main sources of risk in the power plant. To quantify each of these risks, appropriate correlations are presented, and the risk values are calculated as a function of the operational parameters of the cycle. In the next step, different multi-objective optimizations have been performed to achieve a configuration that has the highest efficiency and lowest risk. The results of optimizations show a good improvement in the thermodynamic efficiencies and risks of the system by 10.7%, 10.2%, and 1.21%, respectively. In the end, the dynamic analysis of the considered power plant is performed for optimal and base-case design.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10221-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-10221-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:A. Arabkoohsar;
A. Arabkoohsar
A. Arabkoohsar in OpenAIREG.B. Andresen;
G.B. Andresen
G.B. Andresen in OpenAIREA major portion of the electricity demand in Denmark is provided by wind farms. As wind power fluctuates sharply, there may be either surplus power or electricity deficit relative to the local demand. Thus, storing the surplus electricity and reclaiming it in demand times can increase the power plant incomes and reliability. On the other hand, as Denmark is one of the countries in which energy consumers are supplied by district heating, the demand for efficient and reliable heat production systems is also high. In this work, a novel and efficient energy storage system capable of providing both heat and electricity is designed and analyzed. This system is a smart combination of a thermal energy storage system and a gas turbine cycle without any combustion chamber. In order to have an optimal configuration, the system is designed based on thermodynamics criteria and net economic revenue. It is shown that the designed system may present an overall energy efficiency of about 90% and an electricity efficiency of approximately 35%. The economic assessment indicates that this innovative high temperature heat and power storage system, even taking into account conservative electricity and heat prices, is very profitable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:A. Arabkoohsar;
A. Arabkoohsar
A. Arabkoohsar in OpenAIREG.B. Andresen;
G.B. Andresen
G.B. Andresen in OpenAIREA major portion of the electricity demand in Denmark is provided by wind farms. As wind power fluctuates sharply, there may be either surplus power or electricity deficit relative to the local demand. Thus, storing the surplus electricity and reclaiming it in demand times can increase the power plant incomes and reliability. On the other hand, as Denmark is one of the countries in which energy consumers are supplied by district heating, the demand for efficient and reliable heat production systems is also high. In this work, a novel and efficient energy storage system capable of providing both heat and electricity is designed and analyzed. This system is a smart combination of a thermal energy storage system and a gas turbine cycle without any combustion chamber. In order to have an optimal configuration, the system is designed based on thermodynamics criteria and net economic revenue. It is shown that the designed system may present an overall energy efficiency of about 90% and an electricity efficiency of approximately 35%. The economic assessment indicates that this innovative high temperature heat and power storage system, even taking into account conservative electricity and heat prices, is very profitable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Authors:Arabkoohsar, Ahmad;
Rahrabi, Hamid Reza; Alsagri, Ali Sulaiman;Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREAlrobaian, Abdulrahman A.;
Alrobaian, Abdulrahman A.
Alrobaian, Abdulrahman A. in OpenAIREThere is no doubt that the determination of a smart charging-discharging pattern can be very effective in increasing the cost-effectiveness and overall energy efficiency of an energy storage system. For finding the optimal operation strategy of the energy storage unit of a renewable power plant, the electricity spot price, the forecast data of energy availability, and the regulations of the local power market should all be taken into account. In addition to these economic considerations, the effect of deviation from the nominal load (partial-load operation) on the performance of the energy storage system is a critical parameter that directly affects the optimal operation pattern of the system in real-life energy markets. In this study, the effects of partial-load work of a low-temperature compressed air energy storage system on its overall performance are investigated thermodynamically employing real performance maps of all the components of the system. The results of the study indicate that the energy storage system needs to operate around nominal design conditions if it is expected to perform efficiently. The round-trip efficiency of the unit approaches 68% at a nominal load while it offers the low efficiencies of 52% and 28% if working at 50% and 10% loads, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Authors:Arabkoohsar, Ahmad;
Rahrabi, Hamid Reza; Alsagri, Ali Sulaiman;Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREAlrobaian, Abdulrahman A.;
Alrobaian, Abdulrahman A.
Alrobaian, Abdulrahman A. in OpenAIREThere is no doubt that the determination of a smart charging-discharging pattern can be very effective in increasing the cost-effectiveness and overall energy efficiency of an energy storage system. For finding the optimal operation strategy of the energy storage unit of a renewable power plant, the electricity spot price, the forecast data of energy availability, and the regulations of the local power market should all be taken into account. In addition to these economic considerations, the effect of deviation from the nominal load (partial-load operation) on the performance of the energy storage system is a critical parameter that directly affects the optimal operation pattern of the system in real-life energy markets. In this study, the effects of partial-load work of a low-temperature compressed air energy storage system on its overall performance are investigated thermodynamically employing real performance maps of all the components of the system. The results of the study indicate that the energy storage system needs to operate around nominal design conditions if it is expected to perform efficiently. The round-trip efficiency of the unit approaches 68% at a nominal load while it offers the low efficiencies of 52% and 28% if working at 50% and 10% loads, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:ASME International Authors: Jafaryar, Mehrdad; Sheikholeslami, Mohsen;Arabkoohsar, Ahmad;
Shafee, Ahmad;Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREdoi: 10.1115/1.4048241
Abstract In the current study, Kelvin force as an external source has been used to affect the ferrofluid flow style. The presence of wire below the pipe creates a variable magnetic force that generates rotating eddies near the wire inside the pipe. To augment the cooling rate, the type of operating fluid changes from pure water to Fe3O4-water ferrofluid. Laminar flow was studied with involving homogeneous model for the ferrofluid. A new term was added to momentum equations as Kelvin force due to the gradient of the magnetic field. Impacts of magnetic number (Mn), the fraction of ferrofluid (φ), and Reynolds number (Re) on the configuration of hydrothermal behavior as well as Nusselt number (Nu) and Darcy factor (f) have been investigated. Utilizing ferrofluid can enhance Nu, while the pressure drop augmentation is negligible. So, selecting such kind of ferrofluid is a promising way to gain better performance. Given Re = 50, Nu enhances by about 1.3% with an increase of the concentration of ferrofluid from 0.01 to 0.04. The rise of Re needs greater pumping power as a higher pressure drop will appear in this case. Besides, a thinner boundary layer has been formed with the growth of Re, which offers a higher Nu. When Mn* = 1.57, the growth of Re provides an augmentation of Nu by 39%. With augmenting Kelvin force, the velocity of ferrofluid enhances, which results in a higher pressure drop.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4048241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4048241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:ASME International Authors: Jafaryar, Mehrdad; Sheikholeslami, Mohsen;Arabkoohsar, Ahmad;
Shafee, Ahmad;Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREdoi: 10.1115/1.4048241
Abstract In the current study, Kelvin force as an external source has been used to affect the ferrofluid flow style. The presence of wire below the pipe creates a variable magnetic force that generates rotating eddies near the wire inside the pipe. To augment the cooling rate, the type of operating fluid changes from pure water to Fe3O4-water ferrofluid. Laminar flow was studied with involving homogeneous model for the ferrofluid. A new term was added to momentum equations as Kelvin force due to the gradient of the magnetic field. Impacts of magnetic number (Mn), the fraction of ferrofluid (φ), and Reynolds number (Re) on the configuration of hydrothermal behavior as well as Nusselt number (Nu) and Darcy factor (f) have been investigated. Utilizing ferrofluid can enhance Nu, while the pressure drop augmentation is negligible. So, selecting such kind of ferrofluid is a promising way to gain better performance. Given Re = 50, Nu enhances by about 1.3% with an increase of the concentration of ferrofluid from 0.01 to 0.04. The rise of Re needs greater pumping power as a higher pressure drop will appear in this case. Besides, a thinner boundary layer has been formed with the growth of Re, which offers a higher Nu. When Mn* = 1.57, the growth of Re provides an augmentation of Nu by 39%. With augmenting Kelvin force, the velocity of ferrofluid enhances, which results in a higher pressure drop.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4048241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4048241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Authors: Mahmood Farzaneh-Gord;Behnam Mohseni-Gharyehsafa;
Behnam Mohseni-Gharyehsafa
Behnam Mohseni-Gharyehsafa in OpenAIREAhmad Arabkoohsar;
Mohammad Hossein Ahmadi; +1 AuthorsAhmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREMahmood Farzaneh-Gord;Behnam Mohseni-Gharyehsafa;
Behnam Mohseni-Gharyehsafa
Behnam Mohseni-Gharyehsafa in OpenAIREAhmad Arabkoohsar;
Mohammad Hossein Ahmadi;Ahmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREMikhail A. Sheremet;
Mikhail A. Sheremet
Mikhail A. Sheremet in OpenAIREThere are technical problems related to storage and transport of biogas gas that should be addressed before practical injection of these fuels into the existing natural gas networks. In addition, their different final applications resulting in the presence of various components and in various concentrations make the problem harder. Therefore, it is indispensable for designers of the pipeline network to know exactly what the thermodynamic properties of a gas mixture are, especially its density, which would vary a lot. In this work, a MLP (Multi-layer Perceptron) neural network is used for the development of the desired biogas properties predictor model. In order to train the network, the biogas thermodynamic properties created using ISO 20765-2 (2015) (where applicable) and experimental values are employed. Results are compared with the values estimated from the GERG2008 equations of state, which are the reference equations for natural gases and experimental values. The results indicate that the developed MLP model presents a high accuracy in the calculations over a wide range of biogas mixtures and input properties ranges for all the output properties including density, compressibility factor, isochoric heat capacity, isobaric heat capacity, isentropic exponent, internal energy, enthalpy, entropy, Joule-Thomson coefficient, and speed of sound. The Root Mean Square Error (RMSE) of the mentioned properties of test data are 0.00012536, 0.00016593, 0.0025213, 0.0016208, 0.00337, 0.0096329, 0.0099837, 0.0035625, 0.01055, and 0.00039428 respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.08.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.08.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Authors: Mahmood Farzaneh-Gord;Behnam Mohseni-Gharyehsafa;
Behnam Mohseni-Gharyehsafa
Behnam Mohseni-Gharyehsafa in OpenAIREAhmad Arabkoohsar;
Mohammad Hossein Ahmadi; +1 AuthorsAhmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREMahmood Farzaneh-Gord;Behnam Mohseni-Gharyehsafa;
Behnam Mohseni-Gharyehsafa
Behnam Mohseni-Gharyehsafa in OpenAIREAhmad Arabkoohsar;
Mohammad Hossein Ahmadi;Ahmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREMikhail A. Sheremet;
Mikhail A. Sheremet
Mikhail A. Sheremet in OpenAIREThere are technical problems related to storage and transport of biogas gas that should be addressed before practical injection of these fuels into the existing natural gas networks. In addition, their different final applications resulting in the presence of various components and in various concentrations make the problem harder. Therefore, it is indispensable for designers of the pipeline network to know exactly what the thermodynamic properties of a gas mixture are, especially its density, which would vary a lot. In this work, a MLP (Multi-layer Perceptron) neural network is used for the development of the desired biogas properties predictor model. In order to train the network, the biogas thermodynamic properties created using ISO 20765-2 (2015) (where applicable) and experimental values are employed. Results are compared with the values estimated from the GERG2008 equations of state, which are the reference equations for natural gases and experimental values. The results indicate that the developed MLP model presents a high accuracy in the calculations over a wide range of biogas mixtures and input properties ranges for all the output properties including density, compressibility factor, isochoric heat capacity, isobaric heat capacity, isentropic exponent, internal energy, enthalpy, entropy, Joule-Thomson coefficient, and speed of sound. The Root Mean Square Error (RMSE) of the mentioned properties of test data are 0.00012536, 0.00016593, 0.0025213, 0.0016208, 0.00337, 0.0096329, 0.0099837, 0.0035625, 0.01055, and 0.00039428 respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.08.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.08.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Authors: Chakravarty, Harapriya;Sadi, Meisam;
Chakravarty, Harapriya; Sulaiman Alsagri, Ali; +2 AuthorsSadi, Meisam
Sadi, Meisam in OpenAIREChakravarty, Harapriya;Sadi, Meisam;
Chakravarty, Harapriya; Sulaiman Alsagri, Ali;Sadi, Meisam
Sadi, Meisam in OpenAIREJames Howard, Thomas;
James Howard, Thomas
James Howard, Thomas in OpenAIREArabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREThe building industry consumes a substantial amount of energy, particularly for heating and cooling, and so contributes significantly to greenhouse gas (GHG) emissions. The vapor absorption chiller (VAC) is one of the most often used cold generating systems for medium and large-scale cooling supplies. Buildings have tended to more commonly use VACs to meet their cooling comfort demands in recent years due to their cost-effectiveness and flexibility of the driving source. Because of the worldwide desire to reduce emissions, the potential of VAC systems with renewable thermal energy systems has made it more appealing. The goal of this analysis is to emphasize the potential integration of VAC with renewable energy technologies including geothermal, biomass, waste heat, surface water, and solar (thermal and PV). This study focuses on the existing and future state of VAC cooling technologies, their technical, economic, and environmental aspects, as well as the framework's analysis and optimization techniques. The paper places a particular emphasis on the cooling-dominated areas of India and Europe. The study finds that, local heat energy availability fosters small-scale circular economies in hot and humid climates, while the high capital costs of transmitting thermal energies across long distances, as well as transmission losses, deter centralized activities. Since there are no HCF emissions, VACs have a major advantage over compression chillers. The findings show that combining VAC with at least four of the six renewable energy sources investigated has enormous potential for the future of clean and sustainable cooling energy alternatives. Small and medium-scale renewable cooling systems, particularly those powered by solar thermal energy, as well as bio-energy, can be cost-effective and installed in a wide range of sites. Solar thermal energy can meet both urban and rural needs, whereas bioenergy is more suited to rural needs. Waste heat recovery systems are mostly utilized to meet industrial cooling needs, and geothermal energy offers a wide range of possible applications but is limited by availability. Bioenergy-based VAC, in particular, has the special advantage of being a carbon-negative solution if the generated bio-char is collected and sequestered.
Aalborg University R... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Authors: Chakravarty, Harapriya;Sadi, Meisam;
Chakravarty, Harapriya; Sulaiman Alsagri, Ali; +2 AuthorsSadi, Meisam
Sadi, Meisam in OpenAIREChakravarty, Harapriya;Sadi, Meisam;
Chakravarty, Harapriya; Sulaiman Alsagri, Ali;Sadi, Meisam
Sadi, Meisam in OpenAIREJames Howard, Thomas;
James Howard, Thomas
James Howard, Thomas in OpenAIREArabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREThe building industry consumes a substantial amount of energy, particularly for heating and cooling, and so contributes significantly to greenhouse gas (GHG) emissions. The vapor absorption chiller (VAC) is one of the most often used cold generating systems for medium and large-scale cooling supplies. Buildings have tended to more commonly use VACs to meet their cooling comfort demands in recent years due to their cost-effectiveness and flexibility of the driving source. Because of the worldwide desire to reduce emissions, the potential of VAC systems with renewable thermal energy systems has made it more appealing. The goal of this analysis is to emphasize the potential integration of VAC with renewable energy technologies including geothermal, biomass, waste heat, surface water, and solar (thermal and PV). This study focuses on the existing and future state of VAC cooling technologies, their technical, economic, and environmental aspects, as well as the framework's analysis and optimization techniques. The paper places a particular emphasis on the cooling-dominated areas of India and Europe. The study finds that, local heat energy availability fosters small-scale circular economies in hot and humid climates, while the high capital costs of transmitting thermal energies across long distances, as well as transmission losses, deter centralized activities. Since there are no HCF emissions, VACs have a major advantage over compression chillers. The findings show that combining VAC with at least four of the six renewable energy sources investigated has enormous potential for the future of clean and sustainable cooling energy alternatives. Small and medium-scale renewable cooling systems, particularly those powered by solar thermal energy, as well as bio-energy, can be cost-effective and installed in a wide range of sites. Solar thermal energy can meet both urban and rural needs, whereas bioenergy is more suited to rural needs. Waste heat recovery systems are mostly utilized to meet industrial cooling needs, and geothermal energy offers a wide range of possible applications but is limited by availability. Bioenergy-based VAC, in particular, has the special advantage of being a carbon-negative solution if the generated bio-char is collected and sequestered.
Aalborg University R... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Mahmood Farzaneh-Gord;
Mahmood Farzaneh-Gord
Mahmood Farzaneh-Gord in OpenAIREAhmad Arabkoohsar;
Ricardo N.N. Koury;Ahmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREAbstract In city gate stations (CGS) experimental facilities are currently employed to specify natural gas compositions and subsequently calculate its density. Then, natural gas mass flow rate is calculated by employing an Ultrasonic Flow Meter (UFM), and a volume corrector to convert the given value to its equivalent in standard conditions. As online measurement of natural gas compositions is a costly and difficult task, this study presents an innovative method for natural gas mass flow metering in CGSs. In this method, a novel correlation, which is a functional of only three simple measurable variables i.e. temperature, pressure and sound speed, is presented for calculating natural gas molecular weight, and then, employing the authentic equations of state (EOS) of AGA8 for natural gas, its density could be calculated. The correlation was developed based on curve fitting and data mining approaches on a large database associated with four different natural gas fields of Iran and its accuracy was validated with available experimental data for seven other Iran's natural gas fields and two more gases with sample compositions. Each database in correlation development and validation stage (13 databases altogether) consists of 17,000 sound speed values in all possible temperature and pressure ranges in CGSs after expansion process. Mean absolute error (MAE) and mean absolute percentage error (MAPE) methods are used to validate the correlation accuracy and compare its performance with the correlation presented previously for the same objective. The evaluation results prove high prediction accuracy for the presented correlation and its superiority comparing to the previous work.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2016.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2016.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Mahmood Farzaneh-Gord;
Mahmood Farzaneh-Gord
Mahmood Farzaneh-Gord in OpenAIREAhmad Arabkoohsar;
Ricardo N.N. Koury;Ahmad Arabkoohsar
Ahmad Arabkoohsar in OpenAIREAbstract In city gate stations (CGS) experimental facilities are currently employed to specify natural gas compositions and subsequently calculate its density. Then, natural gas mass flow rate is calculated by employing an Ultrasonic Flow Meter (UFM), and a volume corrector to convert the given value to its equivalent in standard conditions. As online measurement of natural gas compositions is a costly and difficult task, this study presents an innovative method for natural gas mass flow metering in CGSs. In this method, a novel correlation, which is a functional of only three simple measurable variables i.e. temperature, pressure and sound speed, is presented for calculating natural gas molecular weight, and then, employing the authentic equations of state (EOS) of AGA8 for natural gas, its density could be calculated. The correlation was developed based on curve fitting and data mining approaches on a large database associated with four different natural gas fields of Iran and its accuracy was validated with available experimental data for seven other Iran's natural gas fields and two more gases with sample compositions. Each database in correlation development and validation stage (13 databases altogether) consists of 17,000 sound speed values in all possible temperature and pressure ranges in CGSs after expansion process. Mean absolute error (MAE) and mean absolute percentage error (MAPE) methods are used to validate the correlation accuracy and compare its performance with the correlation presented previously for the same objective. The evaluation results prove high prediction accuracy for the presented correlation and its superiority comparing to the previous work.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2016.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2016.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Authors:Behzadi, Amirmohammad;
Behzadi, Amirmohammad
Behzadi, Amirmohammad in OpenAIREArabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREYang, Yongheng;
Yang, Yongheng
Yang, Yongheng in OpenAIREThere is a variety of solar-based energy system designs for buildings. Although these systems are economically profitable, reducing the energy cost of the buildings over time, their penetration has not been that impressive yet due to their high initial cost. In this study, an energy system comprising a few PVT panels (without any batteries) and a heat storage tank is proposed and investigated for smart buildings with two-way interactions with both heat and electricity grids. Removing the battery from the system would result in a sharp reduction of the cost of the system and, thereby, will make incentives for the end-users to adopt the solution. This novel system will not only supply the buildings’ real-time electricity and domestic hot water needs but also will compensate for a significant portion of the buildings’ energy expenses by selling the surplus generations to the electricity and heat networks. The dynamic model of the proposed system is comprehensively analyzed from thermodynamic and economic points of view using TRNSYS software. Additionally, defining the overall annual exergy efficiency, and the total product cost as the objective functions, optimization of the design and size of the system employing the TRNOPT tool has been done. It is shown that the optimized system results in 16.7 €/MWh and 7.7 €/MWh lower energy costs for electricity and heat of the buildings compared to when the buildings’ demand is only supplied by heat and electricity grids.
VBN arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert VBN arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Authors:Behzadi, Amirmohammad;
Behzadi, Amirmohammad
Behzadi, Amirmohammad in OpenAIREArabkoohsar, Ahmad;
Arabkoohsar, Ahmad
Arabkoohsar, Ahmad in OpenAIREYang, Yongheng;
Yang, Yongheng
Yang, Yongheng in OpenAIREThere is a variety of solar-based energy system designs for buildings. Although these systems are economically profitable, reducing the energy cost of the buildings over time, their penetration has not been that impressive yet due to their high initial cost. In this study, an energy system comprising a few PVT panels (without any batteries) and a heat storage tank is proposed and investigated for smart buildings with two-way interactions with both heat and electricity grids. Removing the battery from the system would result in a sharp reduction of the cost of the system and, thereby, will make incentives for the end-users to adopt the solution. This novel system will not only supply the buildings’ real-time electricity and domestic hot water needs but also will compensate for a significant portion of the buildings’ energy expenses by selling the surplus generations to the electricity and heat networks. The dynamic model of the proposed system is comprehensively analyzed from thermodynamic and economic points of view using TRNSYS software. Additionally, defining the overall annual exergy efficiency, and the total product cost as the objective functions, optimization of the design and size of the system employing the TRNOPT tool has been done. It is shown that the optimized system results in 16.7 €/MWh and 7.7 €/MWh lower energy costs for electricity and heat of the buildings compared to when the buildings’ demand is only supplied by heat and electricity grids.
VBN arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert VBN arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.115926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu