- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Energy Research
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:IOP Publishing R B Jackson; C Le Quéré; R M Andrew; J G Canadell; G P Peters; J Roy; L Wu;Carbon dioxide (CO _2 ) emissions from fossil fuels and industry comprise ~90% of all CO _2 emissions from human activities. For the last three years, such emissions were stable, despite continuing growth in the global economy. Many positive trends contributed to this unique hiatus, including reduced coal use in China and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon renewables such as wind and solar. However, the temporary hiatus appears to have ended in 2017. For 2017, we project emissions growth of 2.0% (range: 0.8%−3.0%) from 2016 levels (leap-year adjusted), reaching a record 36.8 ± 2 Gt CO _2 . Economic projections suggest further emissions growth in 2018 is likely. Time is running out on our ability to keep global average temperature increases below 2 °C and, even more immediately, anything close to 1.5 °C.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa9662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 40 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa9662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 France, United Kingdom, France, Germany, France, FrancePublisher:Springer Science and Business Media LLC Funded by:RCN | The Global Carbon Budget ...RCN| The Global Carbon Budget and Carbon AtlasWolfgang K. Heidug; Felix Creutzig; Nebojsa Nakicenovic; Robbie M. Andrew; Anand Patwardhan; Florian Kraxner; J. Milne; Elmar Kriegler; Arnulf Grubler; Detlef P. van Vuuren; Detlef P. van Vuuren; José Roberto Moreira; Ayyoob Sharifi; Annette Cowie; Asbjørn Torvanger; Mathis Rogner; Steven J. Davis; Philippe Ciais; Thomas Gasser; Chris D. Jones; David L. McCollum; Pete Smith; Joeri Rogelj; Joeri Rogelj; Cho Yongsung; Emma Littleton; J. Lowe; Etsushi Kato; Jan C. Minx; Jan C. Minx; Sabine Fuss; Matthias Jonas; Robert B. Jackson; Edward S. Rubin; Pierre Friedlingstein; Gyami Shrestha; Glen P. Peters; Benoit Gabrielle; Josep G. Canadell; Yoshiki Yamagata; Jae Edmonds; Michael Obersteiner; Volker Krey;doi: 10.1038/nclimate2870
To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.
IIASA DARE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverCIRAD: HAL (Agricultural Research for Development)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,047 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverCIRAD: HAL (Agricultural Research for Development)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Ernst Detlef Schulze; Josep G. Canadell;doi: 10.1038/ncomms6282
pmid: 25407959
Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.
Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, GermanyPublisher:Copernicus GmbH Funded by:EC | GREEN GODS, , EC | ESM2025 +10 projectsEC| GREEN GODS ,[no funder available] ,EC| ESM2025 ,NSF| ACO: An Open CI Ecosystem to Advance Scientific Discovery (OpenCI) ,NSF| Track 1: ACCESS Resource Allocations Marketplace and Platform Services (RAMPS) ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20) ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,UKRI| The UK Earth system modelling project ,NSF| NRT: Addressing resiliency to climate-related hazards and disasters through data-informed decision making ,NSF| Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI ,NSF| Track 3: COre National Ecosystem for CyberinfrasTructure (CONECT) ,UKRI| NCEO LTS-S ,NSF| Track 4: Advanced CI Coordination Ecosystem: Monitoring and Measurement ServicesHanqin Tian; Naiqing Pan; Rona L. Thompson; Josep G. Canadell; P. Suntharalingam; Pierre Regnier; Eric A. Davidson; Michael J. Prather; Philippe Ciais; Marilena Muntean; Shufen Pan; Wilfried Winiwarter; Sönke Zaehle; Feng Zhou; Robert B. Jackson; Hermann W. Bange; Sarah Berthet; Zihao Bian; Daniele Bianchi; Lex Bouwman; Erik T. Buitenhuis; G. S. Dutton; Minpeng Hu; Akihiko Ito; Atul K. Jain; Aurich Jeltsch‐Thömmes; Fortunat Joos; Sian Kou‐Giesbrecht; P. B. Krummel; Lan X; Angela Landolfi; Ronny Lauerwald; Ya Li; Chaoqun Lü; Taylor Maavara; Manfredi Manizza; Dylan B. Millet; Jens Mühle; Prabir K. Patra; Glen P. Peters; Xiaoyu Qin; Peter Raymond; Laure Resplandy; Judith A. Rosentreter; Hao Shi; Qing Sun; Daniele Tonina; Francesco N. Tubiello; Guido R. van der Werf; Nicolas Vuichard; Junjie Wang; Kelley C. Wells; Luke M. Western; Chris Wilson; Jia Yang; Yuanzhi Yao; Yongfa You; Qing Zhu;Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | CICEP-Strategic Challenge...RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyGlen P. Peters; Robbie M. Andrew; Josep G. Canadell; Sabine Fuss; Robert B. Jackson; Jan Ivar Korsbakken; Corinne Le Quéré; Nebojsa Nakicenovic;doi: 10.1038/nclimate3202
This paper presents interrelated indicators for tracking progress towards the Paris Agreement. Findings show broad consistency with keeping warming below 2 °C, but technological advances are needed to achieve net-zero emissions. Current emission pledges to the Paris Agreement appear insufficient to hold the global average temperature increase to well below 2 °C above pre-industrial levels1. Yet, details are missing on how to track progress towards the ‘Paris goal’, inform the five-yearly ‘global stocktake’, and increase the ambition of Nationally Determined Contributions (NDCs). We develop a nested structure of key indicators to track progress through time. Global emissions2,3 track aggregated progress1, country-level decompositions track emerging trends4,5,6 that link directly to NDCs7, and technology diffusion8,9,10 indicates future reductions. We find the recent slowdown in global emissions growth11 is due to reduced growth in coal use since 2011, primarily in China and secondarily in the United States12. The slowdown is projected to continue in 2016, with global CO2 emissions from fossil fuels and industry similar to the 2015 level of 36 GtCO2. Explosive and policy-driven growth in wind and solar has contributed to the global emissions slowdown, but has been less important than economic factors and energy efficiency. We show that many key indicators are currently broadly consistent with emission scenarios that keep temperatures below 2 °C, but the continued lack of large-scale carbon capture and storage13 threatens 2030 targets and the longer-term Paris ambition of net-zero emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 310 citations 310 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 251 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | CHE, EC | PARIS REINFORCE, EC | VERIFY +1 projectsEC| CHE ,EC| PARIS REINFORCE ,EC| VERIFY ,EC| 4CMatthew W. Jones; Steven J. Davis; Glen P. Peters; Josep G. Canadell; Corinne Le Quéré; Pierre Friedlingstein; Pierre Friedlingstein; Robbie M. Andrew; Robert B. Jackson;Five years after the adoption of the Paris Climate Agreement, growth in global CO2 emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2 emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era. Growth in CO2 emissions has slowed since the Paris Agreement 5 years ago. The COVID-19 pandemic has caused a drop in emissions of about 7% in 2020 relative to 2019, but strong policy is needed to address underlying drivers and to sustain a decline in global emissions beyond the current crisis.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 28visibility views 28 download downloads 52 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2013Embargo end date: 10 Jul 2013 SwitzerlandPublisher:Copernicus GmbH Funded by:ARC | Assimilation of trace atm...ARC| Assimilation of trace atmospheric constituents for climate (ATACC): Linking chemical weather and climatePhilippe Ciais; Han Dolman; Antonio Bombelli; Riley Duren; Anna Peregon; P. J. Rayner; Charles E. Miller; Nadine Gobron; G. Kinderman; Gregg Marland; Nicolas Gruber; Frédéric Chevallier; R. J. Andres; Gianpaolo Balsamo; Laurent Bopp; François Marie Bréon; Grégoire Broquet; Roger Dargaville; Tom J. Battin; Alberto Borges; H. Bovensmann; Michael Buchwitz; J. H. Butler; Josep G. Canadell; R.B. Cook; Ruth DeFries; Richard Engelen; K. R. Gurney; Christoph Heinze; Martin Heimann; A. Held; Matieu Henry; B. E. Law; Sebastiaan Luyssaert; J. B. Miller; Takashi Moriyama; C. Moulin; Ranga B. Myneni; C. Nussli; Michael Obersteiner; Dennis S. Ojima; Yude Pan; Jean-Daniel Paris; Shilong Piao; Benjamin Poulter; Stephen Plummer; S. Quegan; Peter A. Raymond; Markus Reichstein; Léonard Rivier; Christopher L. Sabine; David Schimel; Oksana Tarasova; R. Wang; Guido R. van der Werf; D. E. Wickland; Mathew Williams; Claus Zehner;Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-10...Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-10-11447-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-10...Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-10-11447-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Germany, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | EMBRACE, EC | GEOCARBON +1 projectsEC| HELIX ,EC| EMBRACE ,EC| GEOCARBON ,RCN| The Global Carbon Budget and Carbon AtlasC. Le Quéré; Gunnar Luderer; Robbie M. Andrew; Joeri Rogelj; Joeri Rogelj; Reto Knutti; Glen P. Peters; D.P. van Vuuren; D.P. van Vuuren; Michiel Schaeffer; Josep G. Canadell; Pierre Friedlingstein; Michael R. Raupach;doi: 10.1038/ngeo2248
handle: 1885/69272
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 623 citations 623 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 01 Jan 2018 United Kingdom, Germany, Germany, Australia, Australia, Germany, Netherlands, SpainPublisher:Copernicus GmbH Funded by:EC | QUINCY, EC | LUC4C, EC | IMBALANCE-P +9 projectsEC| QUINCY ,EC| LUC4C ,EC| IMBALANCE-P ,EC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIBER ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| HELIXBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 990 citations 990 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 24visibility views 24 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United States, Netherlands, France, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Takashi Maki; Richard Engelen; G. James Collatz; David Baker; Frédéric Chevallier; Peter Bergamaschi; Thomas Kaminski; Dmitry Belikov; Bakr Badawy; Dylan B. A. Jones; Christian Rödenbeck; Annemarie Fraser; Jocelyn Turnbull; Michael J. Prather; Aslam Khalil; Shamil Maksyutov; Z. Poussi; Parv Suntharalingam; Ian G. Enting; Grégoire Broquet; Nir Y. Krakauer; Jing M. Chen; Philippe Ciais; Prasad S. Kasibhatla; Andrew C. Manning; Martin Heimann; Tim Butler; Philippe Peylin; Jorge L. Sarmiento; Sourish Basu; John B. Miller; John B. Miller; Scott Denning; Manuel Gloor; Wouter Peters; Taro Takahashi; Paul I. Palmer; James T. Randerson; Marko Scholze; Christoph Gerbig; David S. Schimel; Prabir K. Patra; Andrew R. Jacobson; Andrew R. Jacobson; Andrew Schuh; Sander Houweling; Marc Fischer; Thomas Röckmann; Philippe Bousquet; Josep G. Canadell; Alex Vermeulen; Maarten Krol; Maarten Krol; L. Yurganov; A. G. C. A. Meesters;Not Available
Science arrow_drop_down eScholarship - University of CaliforniaArticle . 2012Data sources: eScholarship - University of Californiahttp://adsabs.harvard.edu/abs/...Article . 2012Data sources: DANS (Data Archiving and Networked Services)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.337.6098.1038-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down eScholarship - University of CaliforniaArticle . 2012Data sources: eScholarship - University of Californiahttp://adsabs.harvard.edu/abs/...Article . 2012Data sources: DANS (Data Archiving and Networked Services)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.337.6098.1038-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:IOP Publishing R B Jackson; C Le Quéré; R M Andrew; J G Canadell; G P Peters; J Roy; L Wu;Carbon dioxide (CO _2 ) emissions from fossil fuels and industry comprise ~90% of all CO _2 emissions from human activities. For the last three years, such emissions were stable, despite continuing growth in the global economy. Many positive trends contributed to this unique hiatus, including reduced coal use in China and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon renewables such as wind and solar. However, the temporary hiatus appears to have ended in 2017. For 2017, we project emissions growth of 2.0% (range: 0.8%−3.0%) from 2016 levels (leap-year adjusted), reaching a record 36.8 ± 2 Gt CO _2 . Economic projections suggest further emissions growth in 2018 is likely. Time is running out on our ability to keep global average temperature increases below 2 °C and, even more immediately, anything close to 1.5 °C.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa9662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 40 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa9662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 France, United Kingdom, France, Germany, France, FrancePublisher:Springer Science and Business Media LLC Funded by:RCN | The Global Carbon Budget ...RCN| The Global Carbon Budget and Carbon AtlasWolfgang K. Heidug; Felix Creutzig; Nebojsa Nakicenovic; Robbie M. Andrew; Anand Patwardhan; Florian Kraxner; J. Milne; Elmar Kriegler; Arnulf Grubler; Detlef P. van Vuuren; Detlef P. van Vuuren; José Roberto Moreira; Ayyoob Sharifi; Annette Cowie; Asbjørn Torvanger; Mathis Rogner; Steven J. Davis; Philippe Ciais; Thomas Gasser; Chris D. Jones; David L. McCollum; Pete Smith; Joeri Rogelj; Joeri Rogelj; Cho Yongsung; Emma Littleton; J. Lowe; Etsushi Kato; Jan C. Minx; Jan C. Minx; Sabine Fuss; Matthias Jonas; Robert B. Jackson; Edward S. Rubin; Pierre Friedlingstein; Gyami Shrestha; Glen P. Peters; Benoit Gabrielle; Josep G. Canadell; Yoshiki Yamagata; Jae Edmonds; Michael Obersteiner; Volker Krey;doi: 10.1038/nclimate2870
To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.
IIASA DARE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverCIRAD: HAL (Agricultural Research for Development)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,047 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverCIRAD: HAL (Agricultural Research for Development)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Ernst Detlef Schulze; Josep G. Canadell;doi: 10.1038/ncomms6282
pmid: 25407959
Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.
Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, GermanyPublisher:Copernicus GmbH Funded by:EC | GREEN GODS, , EC | ESM2025 +10 projectsEC| GREEN GODS ,[no funder available] ,EC| ESM2025 ,NSF| ACO: An Open CI Ecosystem to Advance Scientific Discovery (OpenCI) ,NSF| Track 1: ACCESS Resource Allocations Marketplace and Platform Services (RAMPS) ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20) ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,UKRI| The UK Earth system modelling project ,NSF| NRT: Addressing resiliency to climate-related hazards and disasters through data-informed decision making ,NSF| Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI ,NSF| Track 3: COre National Ecosystem for CyberinfrasTructure (CONECT) ,UKRI| NCEO LTS-S ,NSF| Track 4: Advanced CI Coordination Ecosystem: Monitoring and Measurement ServicesHanqin Tian; Naiqing Pan; Rona L. Thompson; Josep G. Canadell; P. Suntharalingam; Pierre Regnier; Eric A. Davidson; Michael J. Prather; Philippe Ciais; Marilena Muntean; Shufen Pan; Wilfried Winiwarter; Sönke Zaehle; Feng Zhou; Robert B. Jackson; Hermann W. Bange; Sarah Berthet; Zihao Bian; Daniele Bianchi; Lex Bouwman; Erik T. Buitenhuis; G. S. Dutton; Minpeng Hu; Akihiko Ito; Atul K. Jain; Aurich Jeltsch‐Thömmes; Fortunat Joos; Sian Kou‐Giesbrecht; P. B. Krummel; Lan X; Angela Landolfi; Ronny Lauerwald; Ya Li; Chaoqun Lü; Taylor Maavara; Manfredi Manizza; Dylan B. Millet; Jens Mühle; Prabir K. Patra; Glen P. Peters; Xiaoyu Qin; Peter Raymond; Laure Resplandy; Judith A. Rosentreter; Hao Shi; Qing Sun; Daniele Tonina; Francesco N. Tubiello; Guido R. van der Werf; Nicolas Vuichard; Junjie Wang; Kelley C. Wells; Luke M. Western; Chris Wilson; Jia Yang; Yuanzhi Yao; Yongfa You; Qing Zhu;Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | CICEP-Strategic Challenge...RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyGlen P. Peters; Robbie M. Andrew; Josep G. Canadell; Sabine Fuss; Robert B. Jackson; Jan Ivar Korsbakken; Corinne Le Quéré; Nebojsa Nakicenovic;doi: 10.1038/nclimate3202
This paper presents interrelated indicators for tracking progress towards the Paris Agreement. Findings show broad consistency with keeping warming below 2 °C, but technological advances are needed to achieve net-zero emissions. Current emission pledges to the Paris Agreement appear insufficient to hold the global average temperature increase to well below 2 °C above pre-industrial levels1. Yet, details are missing on how to track progress towards the ‘Paris goal’, inform the five-yearly ‘global stocktake’, and increase the ambition of Nationally Determined Contributions (NDCs). We develop a nested structure of key indicators to track progress through time. Global emissions2,3 track aggregated progress1, country-level decompositions track emerging trends4,5,6 that link directly to NDCs7, and technology diffusion8,9,10 indicates future reductions. We find the recent slowdown in global emissions growth11 is due to reduced growth in coal use since 2011, primarily in China and secondarily in the United States12. The slowdown is projected to continue in 2016, with global CO2 emissions from fossil fuels and industry similar to the 2015 level of 36 GtCO2. Explosive and policy-driven growth in wind and solar has contributed to the global emissions slowdown, but has been less important than economic factors and energy efficiency. We show that many key indicators are currently broadly consistent with emission scenarios that keep temperatures below 2 °C, but the continued lack of large-scale carbon capture and storage13 threatens 2030 targets and the longer-term Paris ambition of net-zero emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 310 citations 310 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 6visibility views 6 download downloads 251 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | CHE, EC | PARIS REINFORCE, EC | VERIFY +1 projectsEC| CHE ,EC| PARIS REINFORCE ,EC| VERIFY ,EC| 4CMatthew W. Jones; Steven J. Davis; Glen P. Peters; Josep G. Canadell; Corinne Le Quéré; Pierre Friedlingstein; Pierre Friedlingstein; Robbie M. Andrew; Robert B. Jackson;Five years after the adoption of the Paris Climate Agreement, growth in global CO2 emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2 emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era. Growth in CO2 emissions has slowed since the Paris Agreement 5 years ago. The COVID-19 pandemic has caused a drop in emissions of about 7% in 2020 relative to 2019, but strong policy is needed to address underlying drivers and to sustain a decline in global emissions beyond the current crisis.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 28visibility views 28 download downloads 52 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2013Embargo end date: 10 Jul 2013 SwitzerlandPublisher:Copernicus GmbH Funded by:ARC | Assimilation of trace atm...ARC| Assimilation of trace atmospheric constituents for climate (ATACC): Linking chemical weather and climatePhilippe Ciais; Han Dolman; Antonio Bombelli; Riley Duren; Anna Peregon; P. J. Rayner; Charles E. Miller; Nadine Gobron; G. Kinderman; Gregg Marland; Nicolas Gruber; Frédéric Chevallier; R. J. Andres; Gianpaolo Balsamo; Laurent Bopp; François Marie Bréon; Grégoire Broquet; Roger Dargaville; Tom J. Battin; Alberto Borges; H. Bovensmann; Michael Buchwitz; J. H. Butler; Josep G. Canadell; R.B. Cook; Ruth DeFries; Richard Engelen; K. R. Gurney; Christoph Heinze; Martin Heimann; A. Held; Matieu Henry; B. E. Law; Sebastiaan Luyssaert; J. B. Miller; Takashi Moriyama; C. Moulin; Ranga B. Myneni; C. Nussli; Michael Obersteiner; Dennis S. Ojima; Yude Pan; Jean-Daniel Paris; Shilong Piao; Benjamin Poulter; Stephen Plummer; S. Quegan; Peter A. Raymond; Markus Reichstein; Léonard Rivier; Christopher L. Sabine; David Schimel; Oksana Tarasova; R. Wang; Guido R. van der Werf; D. E. Wickland; Mathew Williams; Claus Zehner;Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-10...Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-10-11447-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-10...Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-10-11447-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Germany, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | EMBRACE, EC | GEOCARBON +1 projectsEC| HELIX ,EC| EMBRACE ,EC| GEOCARBON ,RCN| The Global Carbon Budget and Carbon AtlasC. Le Quéré; Gunnar Luderer; Robbie M. Andrew; Joeri Rogelj; Joeri Rogelj; Reto Knutti; Glen P. Peters; D.P. van Vuuren; D.P. van Vuuren; Michiel Schaeffer; Josep G. Canadell; Pierre Friedlingstein; Michael R. Raupach;doi: 10.1038/ngeo2248
handle: 1885/69272
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 623 citations 623 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 01 Jan 2018 United Kingdom, Germany, Germany, Australia, Australia, Germany, Netherlands, SpainPublisher:Copernicus GmbH Funded by:EC | QUINCY, EC | LUC4C, EC | IMBALANCE-P +9 projectsEC| QUINCY ,EC| LUC4C ,EC| IMBALANCE-P ,EC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIBER ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| HELIXBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 990 citations 990 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 24visibility views 24 download downloads 76 Powered bymore_vert OceanRep arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science DataOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United States, Netherlands, France, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Takashi Maki; Richard Engelen; G. James Collatz; David Baker; Frédéric Chevallier; Peter Bergamaschi; Thomas Kaminski; Dmitry Belikov; Bakr Badawy; Dylan B. A. Jones; Christian Rödenbeck; Annemarie Fraser; Jocelyn Turnbull; Michael J. Prather; Aslam Khalil; Shamil Maksyutov; Z. Poussi; Parv Suntharalingam; Ian G. Enting; Grégoire Broquet; Nir Y. Krakauer; Jing M. Chen; Philippe Ciais; Prasad S. Kasibhatla; Andrew C. Manning; Martin Heimann; Tim Butler; Philippe Peylin; Jorge L. Sarmiento; Sourish Basu; John B. Miller; John B. Miller; Scott Denning; Manuel Gloor; Wouter Peters; Taro Takahashi; Paul I. Palmer; James T. Randerson; Marko Scholze; Christoph Gerbig; David S. Schimel; Prabir K. Patra; Andrew R. Jacobson; Andrew R. Jacobson; Andrew Schuh; Sander Houweling; Marc Fischer; Thomas Röckmann; Philippe Bousquet; Josep G. Canadell; Alex Vermeulen; Maarten Krol; Maarten Krol; L. Yurganov; A. G. C. A. Meesters;Not Available
Science arrow_drop_down eScholarship - University of CaliforniaArticle . 2012Data sources: eScholarship - University of Californiahttp://adsabs.harvard.edu/abs/...Article . 2012Data sources: DANS (Data Archiving and Networked Services)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.337.6098.1038-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down eScholarship - University of CaliforniaArticle . 2012Data sources: eScholarship - University of Californiahttp://adsabs.harvard.edu/abs/...Article . 2012Data sources: DANS (Data Archiving and Networked Services)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.337.6098.1038-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu