- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of)Publisher:Tsinghua University Press Wang, Shanying; Wang, Ziwei; Chen, Fangzheng; Peng, Bo; Xu, Jie; Li, Junzhe; Lv, Yaohui; Kang, Qi; Xia, Ailin; Ma, Lianbo;Lithium-sulfur (Li-S) batteries with the merits of high theoretical capacity and high energy density have gained significant attention as the next-generation energy storage devices. Unfortunately, the main pressing issues of sluggish reaction kinetics and severe shuttling of polysulfides hampered their practical application. To overcome these obstacles, various strategies adopting high-efficient electrocatalysts have been explored to enable the rapid polysulfide conversions and thereby suppressing the polysulfide shuttling. This review first summarizes the recent progress on electrocatalysts involved in hosts, interlayers, and protective layers. Then, these electrocatalysts in Li-S batteries are analyzed by listing representative works, from the viewpoints of design concepts, engineering strategies, working principles, and electrochemical performance. Finally, the remaining issues/challenges and future perspectives facing electrocatalysts are given and discussed. This review may provide new guidance for the future construction of electrocatalysts and their further utilizations in high-performance Li-S batteries. [Figure not available: see fulltext.]. © 2022, Tsinghua University Press.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12274-022-5215-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12274-022-5215-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of)Publisher:Tsinghua University Press Wang, Shanying; Wang, Ziwei; Chen, Fangzheng; Peng, Bo; Xu, Jie; Li, Junzhe; Lv, Yaohui; Kang, Qi; Xia, Ailin; Ma, Lianbo;Lithium-sulfur (Li-S) batteries with the merits of high theoretical capacity and high energy density have gained significant attention as the next-generation energy storage devices. Unfortunately, the main pressing issues of sluggish reaction kinetics and severe shuttling of polysulfides hampered their practical application. To overcome these obstacles, various strategies adopting high-efficient electrocatalysts have been explored to enable the rapid polysulfide conversions and thereby suppressing the polysulfide shuttling. This review first summarizes the recent progress on electrocatalysts involved in hosts, interlayers, and protective layers. Then, these electrocatalysts in Li-S batteries are analyzed by listing representative works, from the viewpoints of design concepts, engineering strategies, working principles, and electrochemical performance. Finally, the remaining issues/challenges and future perspectives facing electrocatalysts are given and discussed. This review may provide new guidance for the future construction of electrocatalysts and their further utilizations in high-performance Li-S batteries. [Figure not available: see fulltext.]. © 2022, Tsinghua University Press.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12274-022-5215-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12274-022-5215-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu