- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Fusco A.; Gioffre D.; Francesco Castelli A.; Bovo C.; Martelli E.;handle: 11311/1260277 , 11571/1483097
As more uncontrollable renewable energy sources are present in the power generation portfolio, the need of more detailed and reliable tools for the optimal operation of energy systems has increased in the last years. This work presents a multi-stage stochastic Mixed Integer Linear Program with binary recourse for optimizing the day-ahead unit commitment of power plants and virtual power plants operating in the day-ahead and ancillary services markets. Scenarios reproduce the uncertainty of the ancillary services market requests, and production of photovoltaic panels. A novel decomposition algorithm is proposed to tackle the challenging multistage stochastic program. The methodology is tested on three types of large power plants: a natural gas-fired combined cycle, a combined heat and power combined cycle with thermal storage, and a virtual power plant integrating a combined cycle with battery and photovoltaic fields. Compared to the typical deterministic unit commitment approach, the proposed stochastic optimization approach allows to increase the revenues of the conventional power plant up to 13.58% and, for the combined heat and power and virtual power plant case, it allows finding a feasible and efficient operational scheduling.
Applied Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019 ItalyPublisher:AIP Publishing Authors: Matteo Zatti; Marco Gabba; Marco Freschini; Emanuele Martelli;doi: 10.1063/1.5138890
handle: 11311/1126589
https://aip.scitatio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://aip.scitatio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Italy, NetherlandsPublisher:Elsevier BV MARTELLI, EMANUELE; T. Kreutz; M. Carbo; CONSONNI, STEFANO; D. Jansen;handle: 11311/608949
-
Applied Energy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Matteo Zatti; Marco Gabba; Marco Freschini; Michele Rossi; Agostino Gambarotta; Mirko Morini; Emanuele Martelli;handle: 11311/1126581 , 11381/2860822
Abstract When optimizing the design of multi-energy systems, the operation strategy and the part-load behavior of the units must be considered in the optimization model, which therefore must be formulated as a two-stage problem. In order to guarantee computational tractability, the operation problem is solved for a limited set of typical and extreme periods. The selection of these periods is an important aspect of the design methodology, as the selection and sizing of the units is carried out on the basis of their optimal operation in the selected periods. This work proposes a novel Mixed Integer Linear Program clustering model, named k-MILP, devised to find at the same time the most representative days of the year and the extreme days. k-MILP allows controlling the features of the selected typical and extreme days and setting a maximum deviation tolerance on the integral of the load duration curves. The novel approach is tested on the design of two different multi-energy systems (a multiple-site university Campus and a single building) and compared with the two well-known clustering techniques k-means and k-medoids. Results show that k-MILP leads to a better representation of both typical and extreme operating conditions guiding towards more efficient and reliable designs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.05.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.05.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Lorenzo Pilotti; Alessandro Francesco Castelli; Emanuele Martelli;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2015 ItalyPublisher:International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems Authors: GATTI, MANUELE; MARTELLI, EMANUELE; Maréchal, François; CONSONNI, STEFANO;handle: 11311/1019752
This paper focuses on the multi-objective optimization of a Selexol® process for the selective removal of CO2 and H2S from coal gasification-derived syngas. A systematic analysis based on a thorough literature review of scheme options, detailed process simulation (including also a properly calibrated PC-SAFT Equation Of State) and design optimization is carried out. More in detail, the design optimization procedure enables the simultaneous optimization of process, utility design, and heat integration, and takes account all of the interactions with the rest of the plant. The multi-objective optimization is carried out with a two-stage approach combining the NSGA-II genetic algorithm with the efficient direct-search method PGS-COM. Results show that in the Selexol® process is crucial to optimize the pressures of the flash cascade releasing the CO2-rich stream to store, because the largest energy penalties are the compression power and the steam necessary for reboiling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11311/1019752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11311/1019752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Martelli E.; Freschini M.; Zatti M.;handle: 11311/1159115
Abstract The use of optimized Multi-Energy Systems, including renewables, combined heat and power units and energy storages, is proven to be effective in the reduction of fossil CO2 emissions. These systems can be efficiently operated to provide electricity, heating and cooling to energy districts and buildings. To increase the share of renewable sources and further decrease CO2 emissions, incentives and/or carbon taxes are set by governments. This work proposes a novel bi-level optimization approach which mimics the actual bilevel decision process to determine the optimal renewable subsidy and carbon tax for small-medium multi-energy systems. At the upper level the government decides the incentives/tax to meet the desired emission reduction target while minimizing its costs and, at the lower level, the owner/operator of the Multi-Energy System decides the optimal design and operation to minimize its Total Annual Cost (sum of investment and operating costs). We devise an efficient heuristic approach to solve the bilevel program and apply the approach to four different real-world applications, namely a university campus, a hospital, an urban district, and an office building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:ASME International Authors: Risimini, GP; Martinelli, M; Chiesa, P; Martelli, E;doi: 10.1115/1.4055790
handle: 11311/1233975
Abstract Among the technologies for carbon capture and storage (CCS) from natural gas, oxy-turbine plants are a very promising solution thanks to the high efficiency, absence of stack, and nearly 100% capture rate. This paper investigates the efficiency which can be achieved by the semi-closed oxy-combustion combined cycle (SCOC-CC) with state-of-the-art and future blade materials. In particular, the analysis considers class-H turbine superalloys with a maximum blade wall temperature of 900 °C and ceramic matrix composites with blade wall temperatures of 1300 °C. Sensitivity analyses are performed to determine the optimal pressure ratio and turbine inlet temperature. The results indicate that state-of-the-art superalloys allow the SCOC-CC to achieve 54% net electric efficiency with a 96% carbon capture rate, while ceramic matrix composite (CMC) blades boost the efficiency up to 60%. For both cases, critical factors are the high temperature gradients across the blade coatings (thermal barrier coating (TBC) for superalloy, environmental barrier coating (EBC) for CMC) and the blade thickness caused by the large heat flux exchanged between hot gases and cooling flows.
RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Canada, ItalyPublisher:Elsevier BV Mohamed Elsholkami; Ali Elkamel; Ali Elkamel; E. Lazzaroni; E. Lazzaroni; Emanuele Martelli;handle: 11311/1045960 , 10012/12436
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.energy.2017.09.072 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Scaccabarozzi R.; Gatti M.; Campanari S.; Martelli E.;handle: 11311/1202561
Abstract This paper presents a new hybrid cycle based on the integration between a pressurized solid oxide fuel cell (SOFC) and a semi-closed regenerative intercooled Brayton cycle using a CO2-rich stream as the working fluid. Nearly pure oxygen is used as oxidant for both the Brayton cycle combustor and the fuel cell. The cycle is conceived to produce electricity while capturing 100% of the produced CO2 using natural gas or other fuels suitable for SOFC fuel cells. If the maximum cycle pressure is above the CO2 critical pressure, the semi-closed Brayton cycle becomes a supercritical CO2 cycle with the related efficiency advantages. In this work, the cycle is modelled with Aspen Plus and its design variables are optimized to find the maximum electric efficiency using an ad-hoc optimization approach. In the case study assessed (natural gas thermal input of 500 MW), the optimized cycle, working at 40 MPa with a cooled expander, achieves an outstandingly high efficiency of 75.7% (LHV basis) with CO2 capture. The sensitivity analysis shows that similar efficiency values can be achieved even with less challenging operating conditions for both the Brayton cycle and fuel cell (maximum cycle pressure of 27.5 bar, uncooled turbine and fuel utilization factor of the fuel cell equal to 0.75).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Fusco A.; Gioffre D.; Francesco Castelli A.; Bovo C.; Martelli E.;handle: 11311/1260277 , 11571/1483097
As more uncontrollable renewable energy sources are present in the power generation portfolio, the need of more detailed and reliable tools for the optimal operation of energy systems has increased in the last years. This work presents a multi-stage stochastic Mixed Integer Linear Program with binary recourse for optimizing the day-ahead unit commitment of power plants and virtual power plants operating in the day-ahead and ancillary services markets. Scenarios reproduce the uncertainty of the ancillary services market requests, and production of photovoltaic panels. A novel decomposition algorithm is proposed to tackle the challenging multistage stochastic program. The methodology is tested on three types of large power plants: a natural gas-fired combined cycle, a combined heat and power combined cycle with thermal storage, and a virtual power plant integrating a combined cycle with battery and photovoltaic fields. Compared to the typical deterministic unit commitment approach, the proposed stochastic optimization approach allows to increase the revenues of the conventional power plant up to 13.58% and, for the combined heat and power and virtual power plant case, it allows finding a feasible and efficient operational scheduling.
Applied Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019 ItalyPublisher:AIP Publishing Authors: Matteo Zatti; Marco Gabba; Marco Freschini; Emanuele Martelli;doi: 10.1063/1.5138890
handle: 11311/1126589
https://aip.scitatio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://aip.scitatio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Italy, NetherlandsPublisher:Elsevier BV MARTELLI, EMANUELE; T. Kreutz; M. Carbo; CONSONNI, STEFANO; D. Jansen;handle: 11311/608949
-
Applied Energy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Matteo Zatti; Marco Gabba; Marco Freschini; Michele Rossi; Agostino Gambarotta; Mirko Morini; Emanuele Martelli;handle: 11311/1126581 , 11381/2860822
Abstract When optimizing the design of multi-energy systems, the operation strategy and the part-load behavior of the units must be considered in the optimization model, which therefore must be formulated as a two-stage problem. In order to guarantee computational tractability, the operation problem is solved for a limited set of typical and extreme periods. The selection of these periods is an important aspect of the design methodology, as the selection and sizing of the units is carried out on the basis of their optimal operation in the selected periods. This work proposes a novel Mixed Integer Linear Program clustering model, named k-MILP, devised to find at the same time the most representative days of the year and the extreme days. k-MILP allows controlling the features of the selected typical and extreme days and setting a maximum deviation tolerance on the integral of the load duration curves. The novel approach is tested on the design of two different multi-energy systems (a multiple-site university Campus and a single building) and compared with the two well-known clustering techniques k-means and k-medoids. Results show that k-MILP leads to a better representation of both typical and extreme operating conditions guiding towards more efficient and reliable designs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.05.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.05.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Lorenzo Pilotti; Alessandro Francesco Castelli; Emanuele Martelli;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2015 ItalyPublisher:International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems Authors: GATTI, MANUELE; MARTELLI, EMANUELE; Maréchal, François; CONSONNI, STEFANO;handle: 11311/1019752
This paper focuses on the multi-objective optimization of a Selexol® process for the selective removal of CO2 and H2S from coal gasification-derived syngas. A systematic analysis based on a thorough literature review of scheme options, detailed process simulation (including also a properly calibrated PC-SAFT Equation Of State) and design optimization is carried out. More in detail, the design optimization procedure enables the simultaneous optimization of process, utility design, and heat integration, and takes account all of the interactions with the rest of the plant. The multi-objective optimization is carried out with a two-stage approach combining the NSGA-II genetic algorithm with the efficient direct-search method PGS-COM. Results show that in the Selexol® process is crucial to optimize the pressures of the flash cascade releasing the CO2-rich stream to store, because the largest energy penalties are the compression power and the steam necessary for reboiling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11311/1019752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11311/1019752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Martelli E.; Freschini M.; Zatti M.;handle: 11311/1159115
Abstract The use of optimized Multi-Energy Systems, including renewables, combined heat and power units and energy storages, is proven to be effective in the reduction of fossil CO2 emissions. These systems can be efficiently operated to provide electricity, heating and cooling to energy districts and buildings. To increase the share of renewable sources and further decrease CO2 emissions, incentives and/or carbon taxes are set by governments. This work proposes a novel bi-level optimization approach which mimics the actual bilevel decision process to determine the optimal renewable subsidy and carbon tax for small-medium multi-energy systems. At the upper level the government decides the incentives/tax to meet the desired emission reduction target while minimizing its costs and, at the lower level, the owner/operator of the Multi-Energy System decides the optimal design and operation to minimize its Total Annual Cost (sum of investment and operating costs). We devise an efficient heuristic approach to solve the bilevel program and apply the approach to four different real-world applications, namely a university campus, a hospital, an urban district, and an office building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:ASME International Authors: Risimini, GP; Martinelli, M; Chiesa, P; Martelli, E;doi: 10.1115/1.4055790
handle: 11311/1233975
Abstract Among the technologies for carbon capture and storage (CCS) from natural gas, oxy-turbine plants are a very promising solution thanks to the high efficiency, absence of stack, and nearly 100% capture rate. This paper investigates the efficiency which can be achieved by the semi-closed oxy-combustion combined cycle (SCOC-CC) with state-of-the-art and future blade materials. In particular, the analysis considers class-H turbine superalloys with a maximum blade wall temperature of 900 °C and ceramic matrix composites with blade wall temperatures of 1300 °C. Sensitivity analyses are performed to determine the optimal pressure ratio and turbine inlet temperature. The results indicate that state-of-the-art superalloys allow the SCOC-CC to achieve 54% net electric efficiency with a 96% carbon capture rate, while ceramic matrix composite (CMC) blades boost the efficiency up to 60%. For both cases, critical factors are the high temperature gradients across the blade coatings (thermal barrier coating (TBC) for superalloy, environmental barrier coating (EBC) for CMC) and the blade thickness caused by the large heat flux exchanged between hot gases and cooling flows.
RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Canada, ItalyPublisher:Elsevier BV Mohamed Elsholkami; Ali Elkamel; Ali Elkamel; E. Lazzaroni; E. Lazzaroni; Emanuele Martelli;handle: 11311/1045960 , 10012/12436
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.energy.2017.09.072 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Scaccabarozzi R.; Gatti M.; Campanari S.; Martelli E.;handle: 11311/1202561
Abstract This paper presents a new hybrid cycle based on the integration between a pressurized solid oxide fuel cell (SOFC) and a semi-closed regenerative intercooled Brayton cycle using a CO2-rich stream as the working fluid. Nearly pure oxygen is used as oxidant for both the Brayton cycle combustor and the fuel cell. The cycle is conceived to produce electricity while capturing 100% of the produced CO2 using natural gas or other fuels suitable for SOFC fuel cells. If the maximum cycle pressure is above the CO2 critical pressure, the semi-closed Brayton cycle becomes a supercritical CO2 cycle with the related efficiency advantages. In this work, the cycle is modelled with Aspen Plus and its design variables are optimized to find the maximum electric efficiency using an ad-hoc optimization approach. In the case study assessed (natural gas thermal input of 500 MW), the optimized cycle, working at 40 MPa with a cooled expander, achieves an outstandingly high efficiency of 75.7% (LHV basis) with CO2 capture. The sensitivity analysis shows that similar efficiency values can be achieved even with less challenging operating conditions for both the Brayton cycle and fuel cell (maximum cycle pressure of 27.5 bar, uncooled turbine and fuel utilization factor of the fuel cell equal to 0.75).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu