- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Eloise Bennett; Ellie R. Paine; Damon Britton; Jakop Schwoerbel; Catriona L. Hurd;doi: 10.1111/jpy.13518
pmid: 39660554
AbstractDissolved organic carbon (DOC) released by macroalgae is an intrinsic component of the coastal ocean carbon cycle, yet knowledge of how future ocean warming may influence this is limited. Temperature is one of the primary abiotic regulators of macroalgal physiology, but there is minimal understanding of how it influences the magnitude and mechanisms of DOC release. To investigate this, we examined the effect of a range of temperatures on DOC release rates and physiological traits of Ecklonia radiata, the most abundant and widespread kelp in Australia that represents a potentially significant contribution to coastal ocean carbon cycling. Juvenile sporophytes were incubated at eight temperatures (4–28°C) for 14 days, after which time, DOC concentrations and physiological traits (growth, photosynthesis, respiration, Fv/Fm, photosynthetic pigment content, and carbon, and nitrogen content) were analyzed using thermal performance curves (TPCs) or regression analyses. Thermal optima were 15.63°C for growth and 25.84°C for photosynthesis, highlighting vulnerability to future ocean warming. Dissolved organic carbon concentrations increased when the temperature was above ~22°C, being greatest at the highest temperature tested (28°C), which was likely driven by photosynthetic overflow and thermal stress. Mean Fv/Fm, total chlorophyll, and total fucoxanthin content were lowest at 28°C. The C:N ratio of blades increased linearly with temperature from 23.9 ± 1.30 at 4°C to 33.0 ± 1.22 at 28°C. We demonstrate increased DOC release by E. radiata under elevated seawater temperatures and discuss potential implications for coastal carbon cycling under future ocean warming given the complex and uncertain fate of macroalgal DOC in the marine environment.
Journal of Phycology arrow_drop_down Journal of PhycologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Phycology arrow_drop_down Journal of PhycologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:The Royal Society Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200101467Damon Britton; Cayne Layton; Craig N. Mundy; Elizabeth A. Brewer; Juan Diego Gaitán-Espitia; John Beardall; John A. Raven; Catriona L. Hurd;Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO 2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7–26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO 2 can mitigate negative effects of warming. To identify whether elevated CO 2 could improve thermal performance of a cool-edge population of E. radiata , we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO 2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO 2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO 2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2023.2253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2023.2253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Cody James; Cayne Layton; Catriona L. Hurd; Damon Britton;doi: 10.1111/jpy.13434
pmid: 38426571
AbstractKelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co‐occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range‐restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4–22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22–23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d−1) and high (90 μmol · d−1) nitrate conditions at and above the thermal optimum (16–23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20–21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean‐warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Eloise Bennett; Ellie R. Paine; Damon Britton; Jakop Schwoerbel; Catriona L. Hurd;doi: 10.1111/jpy.13518
pmid: 39660554
AbstractDissolved organic carbon (DOC) released by macroalgae is an intrinsic component of the coastal ocean carbon cycle, yet knowledge of how future ocean warming may influence this is limited. Temperature is one of the primary abiotic regulators of macroalgal physiology, but there is minimal understanding of how it influences the magnitude and mechanisms of DOC release. To investigate this, we examined the effect of a range of temperatures on DOC release rates and physiological traits of Ecklonia radiata, the most abundant and widespread kelp in Australia that represents a potentially significant contribution to coastal ocean carbon cycling. Juvenile sporophytes were incubated at eight temperatures (4–28°C) for 14 days, after which time, DOC concentrations and physiological traits (growth, photosynthesis, respiration, Fv/Fm, photosynthetic pigment content, and carbon, and nitrogen content) were analyzed using thermal performance curves (TPCs) or regression analyses. Thermal optima were 15.63°C for growth and 25.84°C for photosynthesis, highlighting vulnerability to future ocean warming. Dissolved organic carbon concentrations increased when the temperature was above ~22°C, being greatest at the highest temperature tested (28°C), which was likely driven by photosynthetic overflow and thermal stress. Mean Fv/Fm, total chlorophyll, and total fucoxanthin content were lowest at 28°C. The C:N ratio of blades increased linearly with temperature from 23.9 ± 1.30 at 4°C to 33.0 ± 1.22 at 28°C. We demonstrate increased DOC release by E. radiata under elevated seawater temperatures and discuss potential implications for coastal carbon cycling under future ocean warming given the complex and uncertain fate of macroalgal DOC in the marine environment.
Journal of Phycology arrow_drop_down Journal of PhycologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Phycology arrow_drop_down Journal of PhycologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:The Royal Society Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200101467Damon Britton; Cayne Layton; Craig N. Mundy; Elizabeth A. Brewer; Juan Diego Gaitán-Espitia; John Beardall; John A. Raven; Catriona L. Hurd;Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO 2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7–26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO 2 can mitigate negative effects of warming. To identify whether elevated CO 2 could improve thermal performance of a cool-edge population of E. radiata , we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO 2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO 2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO 2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2023.2253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2023.2253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Cody James; Cayne Layton; Catriona L. Hurd; Damon Britton;doi: 10.1111/jpy.13434
pmid: 38426571
AbstractKelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co‐occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range‐restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4–22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22–23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d−1) and high (90 μmol · d−1) nitrate conditions at and above the thermal optimum (16–23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20–21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean‐warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpy.13434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu