- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Munazzam Jawad Shahid; Ameena A. AL-surhanee; Fayza Kouadri; Shafaqat Ali; Neeha Nawaz; Muhammad Afzal; Muhammad Rizwan; Basharat Ali; Mona H. Soliman;doi: 10.3390/su12145559
This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Aisha A Alayafi; Tahira Yasmeen; Haifa Abdulaziz S. Alhaithloul; Muhammad Rizwan; +5 AuthorsAisha A Alayafi; Tahira Yasmeen; Haifa Abdulaziz S. Alhaithloul; Muhammad Rizwan; Mona H. Soliman; Muhammad Zubair; Azka Iftikhar; Shafaqat Ali; Muhammad Arif;pmid: 31487671
The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:American Scientific Publishers Authors: Ghalia S. H. Alnusairi; Ameena A. AL-Surhanee; Suliman M. S. Alghanem; Ibtisam Mohammed Alsudays; +6 AuthorsGhalia S. H. Alnusairi; Ameena A. AL-Surhanee; Suliman M. S. Alghanem; Ibtisam Mohammed Alsudays; Talaat H. Habeeb; Faisal Al-Sarraj; Majid Al-Zahrani; Abdullah Alaklabi; Hailah M. Almohaimeed; Mona H. Soliman;The textile industry plays a major part in the economy of the Kingdom of Saudi Arabia (KSA). However, the environmental impact of textile dyeing and wastewater discharge has become a growing concern in the region. This study addressed this issue by identifying and characterizing azo dye degrading enzymes that can be used in bioremediation strategies. Six enzymes, namely Thiol reductase, Thiol peroxidase, Alkene reductase, NADH-oxidoreductase, Oxidoreductase, and Sulfite reductase, were identified through a literature review and used as queries in BLASTp to search for homologous enzymes from Bacillus cereus, Brevibacillus brevis, Bacillus acidicola, and Paenibacillus alvei. The physicochemical characteristics and subcellular distribution of these enzymes were determined using online tools. Phylogenetic analysis was performed to investigate the evolutionary connection of these enzymes across different bacterial species. Additionally, gene structure and motif analysis were conducted to gain insights into functional motifs and gene organization of these enzymes. Domain prediction and protein–protein interaction analysis were carried out to identify conserved domains and potential protein interactions. The outcomes of this study offer valuable understandings on prospect of azo dye degrading enzymes for bioremediation strategies in the KSA textile industry, which is in agreement with the future Vision 2030 strategy. The identified enzymes and their homologs from other microbial genomes represent promising candidates for further experimental validation and utilization in bioremediation processes. Moreover, they contribute to the development of effective bioremediation strategies for the textile industry in the KSA region. Overall, this study enhances our understanding on azo dye degrading enzymes and their potential uses in the textile industry, particularly in the context of KSA.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jbmb.2025.2476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jbmb.2025.2476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Muhammad Rizwan; Umair Ashraf; Muhammad Zubair; Haifa Abdulaziz S. Alhaithloul; Mona H. Soliman; Mona H. Soliman; Shafaqat Ali; Shafaqat Ali; Sheharyaar Farid; Mujahid Farid; Salah M. Gowayed; Hafiz Khuzama Ishaq;pmid: 31574440
The adverse industrial activities discharged contaminated wastewater directly into the water bodies that contain toxic substances such as heavy metals. The contours use of marble industrial effluents may affect the fertility of soil and crop growth. The present study was conducted to investigate the toxic effects of marble industrial effluents (M.E) on Zea mays L under the exogenous application of citric acid (CA) with different combinations such as marble industrial effluent (0, 30%, 60%, 100%) diluted with distilled water and CA (10 mM). The results showed significant decrease in the growth of Zea mays with increasing concentration of marble industrial effluent. The maximum reduction in plant height, root length, number of leaves, leaf area and fresh and dry biomass was observed at the application of 100% M.E as compared to control. Similar to growth conditions the photosynthetic machinery and the activities of antioxidant enzymes (Superoxide dismutase (SOD), Peroxidases (POD), Catalases (CAT), Ascorbate peroxidase (APX)) was also decreased with increasing concentration of M.E. The application of CA significantly alleviated the M.E induced toxic effect on Zea mays and ameliorated the growth, biomass, photosynthesis and antioxidant enzymes activities by reducing the production of reactive oxygen species. The C.A application also enhanced the heavy metal content such as chromium (Cr), cadmium (Cd), Zinc (Zn) in different parts of Zea mays. The results concluded that the Zea mays tolerant varieties can be a potential candidate for the M.E irrigated soil and might be suitable for the phyto-extraction of Cr, Cd and Zn.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Munazzam Jawad Shahid; Ameena A. AL-surhanee; Fayza Kouadri; Shafaqat Ali; Neeha Nawaz; Muhammad Afzal; Muhammad Rizwan; Basharat Ali; Mona H. Soliman;doi: 10.3390/su12145559
This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Aisha A Alayafi; Tahira Yasmeen; Haifa Abdulaziz S. Alhaithloul; Muhammad Rizwan; +5 AuthorsAisha A Alayafi; Tahira Yasmeen; Haifa Abdulaziz S. Alhaithloul; Muhammad Rizwan; Mona H. Soliman; Muhammad Zubair; Azka Iftikhar; Shafaqat Ali; Muhammad Arif;pmid: 31487671
The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:American Scientific Publishers Authors: Ghalia S. H. Alnusairi; Ameena A. AL-Surhanee; Suliman M. S. Alghanem; Ibtisam Mohammed Alsudays; +6 AuthorsGhalia S. H. Alnusairi; Ameena A. AL-Surhanee; Suliman M. S. Alghanem; Ibtisam Mohammed Alsudays; Talaat H. Habeeb; Faisal Al-Sarraj; Majid Al-Zahrani; Abdullah Alaklabi; Hailah M. Almohaimeed; Mona H. Soliman;The textile industry plays a major part in the economy of the Kingdom of Saudi Arabia (KSA). However, the environmental impact of textile dyeing and wastewater discharge has become a growing concern in the region. This study addressed this issue by identifying and characterizing azo dye degrading enzymes that can be used in bioremediation strategies. Six enzymes, namely Thiol reductase, Thiol peroxidase, Alkene reductase, NADH-oxidoreductase, Oxidoreductase, and Sulfite reductase, were identified through a literature review and used as queries in BLASTp to search for homologous enzymes from Bacillus cereus, Brevibacillus brevis, Bacillus acidicola, and Paenibacillus alvei. The physicochemical characteristics and subcellular distribution of these enzymes were determined using online tools. Phylogenetic analysis was performed to investigate the evolutionary connection of these enzymes across different bacterial species. Additionally, gene structure and motif analysis were conducted to gain insights into functional motifs and gene organization of these enzymes. Domain prediction and protein–protein interaction analysis were carried out to identify conserved domains and potential protein interactions. The outcomes of this study offer valuable understandings on prospect of azo dye degrading enzymes for bioremediation strategies in the KSA textile industry, which is in agreement with the future Vision 2030 strategy. The identified enzymes and their homologs from other microbial genomes represent promising candidates for further experimental validation and utilization in bioremediation processes. Moreover, they contribute to the development of effective bioremediation strategies for the textile industry in the KSA region. Overall, this study enhances our understanding on azo dye degrading enzymes and their potential uses in the textile industry, particularly in the context of KSA.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jbmb.2025.2476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jbmb.2025.2476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Muhammad Rizwan; Umair Ashraf; Muhammad Zubair; Haifa Abdulaziz S. Alhaithloul; Mona H. Soliman; Mona H. Soliman; Shafaqat Ali; Shafaqat Ali; Sheharyaar Farid; Mujahid Farid; Salah M. Gowayed; Hafiz Khuzama Ishaq;pmid: 31574440
The adverse industrial activities discharged contaminated wastewater directly into the water bodies that contain toxic substances such as heavy metals. The contours use of marble industrial effluents may affect the fertility of soil and crop growth. The present study was conducted to investigate the toxic effects of marble industrial effluents (M.E) on Zea mays L under the exogenous application of citric acid (CA) with different combinations such as marble industrial effluent (0, 30%, 60%, 100%) diluted with distilled water and CA (10 mM). The results showed significant decrease in the growth of Zea mays with increasing concentration of marble industrial effluent. The maximum reduction in plant height, root length, number of leaves, leaf area and fresh and dry biomass was observed at the application of 100% M.E as compared to control. Similar to growth conditions the photosynthetic machinery and the activities of antioxidant enzymes (Superoxide dismutase (SOD), Peroxidases (POD), Catalases (CAT), Ascorbate peroxidase (APX)) was also decreased with increasing concentration of M.E. The application of CA significantly alleviated the M.E induced toxic effect on Zea mays and ameliorated the growth, biomass, photosynthesis and antioxidant enzymes activities by reducing the production of reactive oxygen species. The C.A application also enhanced the heavy metal content such as chromium (Cr), cadmium (Cd), Zinc (Zn) in different parts of Zea mays. The results concluded that the Zea mays tolerant varieties can be a potential candidate for the M.E irrigated soil and might be suitable for the phyto-extraction of Cr, Cd and Zn.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu