- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Wojtusik, M.; Zurita Redondo, María Esther; Villar, J. C.; Ladero, M.; García-Ochoa, F.;The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2016License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.05.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2016License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.05.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC I. de la Torre; V. Martin-Dominguez; M. G. Acedos; J. Esteban; V. E. Santos; M. Ladero;pmid: 31187209
Orange peel waste (OPW) (peels, pulp and seeds) is an underutilised residue coming from the orange juice industry. Its classical applications are cattle feeding and composting, while they cannot ensure a total use of OPW, so landfilling is also common practice. On the other side, OPW is very rich in sugars, polysaccharides, essential oils and polyphenols, so there is a vast literature focused on the development and optimization of technologies and processes to several products from OPW. In this review, papers on OPW-based bioprocesses are visited, discovering a wide landscape that goes from the composting and biogas processes on detoxified OPW (deoiled) to bioprocesses to bioethanol, chemicals, flavours and polymers. All these processes are prone to integration within the 2nd-generation biorefinery framework.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-09929-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-09929-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:MDPI AG Funded by:EC | M-ERA.NET3EC| M-ERA.NET3Authors: Miguel Ladero; Jose Alberto Reche-Sainz; M. Esther Gallardo;Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying treatments for these disorders. The discovery of induced pluripotent stem cell (iPSC) technology has opened several promising opportunities in the field of HON research and the search for therapeutic approaches. This systematic review is focused on the two most frequent HONs (LHON and DOA) and on the recent studies related to the application of human iPSC technology in combination with biomaterials technology for their potential use in the development of RGC replacement therapies with the final aim of the improvement or even the restoration of the vision of HON patients. To this purpose, the combination of natural and synthetic biomaterials modified with peptides, neurotrophic factors, and other low- to medium-molecular weight compounds, mimicking the ocular extracellular matrices, with human iPSC or iPSC-derived cell retinal progenitors holds enormous potential to be exploited in the near future for the generation of transplantable RGC populations.
Bioengineering arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/bioengineering11010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioengineering arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/bioengineering11010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Santos De Dios, S. María; Carbajo, J. M.; Quintana, E.; Ibarra Trejo, David; Gómez, N.; Ladero, M.; Eugenio Martín, María Eugenia; Villar, J. C.;Bacterial cellulose (BC) synthesized by Gluconacetobacter sucrofermentans CECT 7291 seems to be a good option for the restoration of degraded paper. In this work BC layers are cultivated and purified by two different methods: an alkaline treatment when the culture media contains ethanol and a thermal treatment if the media is free from ethanol. The main goal of these tests was the characterization of BC layers measured in terms of tear and burst indexes, optical properties, SEM, X-ray diffraction, FTIR, degree of polymerization, static and dynamic contact angles, and mercury intrusion porosimetry. The BC layers were also evaluated in the same terms after an aging treatment. Results showed that BC has got high crystallinity index, low internal porosity, good mechanical properties and high stability over time, especially when purified by the alkaline treatment. These features make BC an adequate candidate for degraded paper reinforcement.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2015License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2014.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 56visibility views 56 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2015License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2014.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Priscilla Vergara; Félix García-Ochoa; Miguel Ladero; Soledad Gutiérrez; Juan C. Villar;Liquor recycle in lignocellulosic biomass fractionation with ethanol-water has been studied. Runs have been carried out in a 6 L tank reactor with liquor recirculation. The liquors obtained in six successive fractioning operations have been analyzed together with the solid phase remnant. Experimental results revealed that the number of re-uses reduces solids recovery (from 52.2 to 42.6%) and cellulose recovery (from 28.1 to 23.3%) with minor or no effect on the hemicelluloses and lignin removal. The more remarkable effect is an increase of the glucose yield (from 76.7 to 95.3% after enzymatic hydrolysis during 72 h). The accumulation of acetic acid in the spent liquors (until 1.3 g/L) seems to be responsible of the higher enzymatic hydrolysis yield, from 76.3 (first use) to 87.7% (fifth re-use). Liquor re-use is effective to improve the sustainability of the pre-treatment obtaining a cellulose-rich solid easy to hydrolysate to sugars reducing energy consumption.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 10 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Esteban, J.; Domínguez, E.; Ladero, M.; Garcia-Ochoa, F.;Abstract The biodiesel industry has been dealing with the issue of glycerol oversupply for some time, leading to blossoming research regarding its valorisation to yield value-added derivatives. This work presents the production of glycerol carbonate through the transesterification of glycerol with dimethyl carbonate (DMC) and ethylene carbonate (EC), also obtaining valuable methanol and ethylene glycol, respectively. CH 3 OK was used as catalyst, with kinetic runs being conducted under mild operation conditions: temperature (50–70 °C using DMC; 40–60 °C using EC), molar excess of organic carbonate to glycerol (1.5–3) and low catalyst loads (1000–2500 ppm for DMC; 50–150 ppm for EC). Kinetic models were proposed, fitted and verified considering the transition from a biphasic to a single phase liquid system and a first order deactivation of the catalyst. In the reaction with DMC, the model contemplates an irreversible reaction with activation energy of 28.4 ± 1.5 kJ·mol − 1 and deactivation constant of 0.03 ± 0.01 min − 1 . Using EC, the activation energies were 83.0 ± 1.6 kJ·mol − 1 and 58.7 ± 11.4 kJ·mol − 1 for the direct and reverse reactions, respectively, and the deactivation constant was 0.11 ± 0.02 min − 1 . This catalyst demonstrates a much higher activity for these reactions than K 2 CO 3 .
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryFuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryFuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:Elsevier BV Authors: Wojtusik Wojtusik, Mateusz; VERGARA ALARCÓN, PRISCILLA; VILLAR, JUAN CARLOS; Ladero, Miguel; +1 AuthorsWojtusik Wojtusik, Mateusz; VERGARA ALARCÓN, PRISCILLA; VILLAR, JUAN CARLOS; Ladero, Miguel; Garcia-Ochoa, Felix;Enzymatic hydrolysis of three pre-treated lignocellulosic biomasses -LCB- (wheat straw-WS-, corn stover-CSV- and cardoon stems -CS-) is studied. These biomasses were pre-treated by two methods: diluted sulfuric acid and acid ethanol-water extraction at six severity levels (H values). Pretreated solid fractions were hydrolyzed with commercial enzyme cocktails at standard conditions. A first-order kinetic fractal model was fitted to the experimental results. This model accurately describes the hydrolysis of all biomasses at all pre-treatment conditions studied. The results show that the formal first-order kinetic constant k depends on the biomass nature. The hydrolysis rate increases as the pre-treatment severity does, while the fractal exponent value h decreases. With these pre-treatments, and in terms of k and h, WS is highly reactive and, at medium H with EW pretreatment, highly accessible; CSV has a low reactivity and high accessibility and CS has the lowest reactivity and an increasing accessibility as severity rises.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 48 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Esteban, J.; Ladero, M.; García-Ochoa, F.;Abstract Synthesis of solketal from acetone and glycerol is approached in this work through a batch process in the absence of solvents. A heterogeneous catalysis approach was employed using the resin Lewatit GF101 as catalyst after selection from a few other sulphonic ion exchange resins. An initial study of the external mass transfer revealed that a stirring rate of 750 rpm sufficed for the external mass transfer not to be the rate limiting step. Similarly, a study of the internal mass transfer showed that for particle sizes of 190 μm the maximum reaction rate was achieved. Once the optimal stirring and particle size conditions were determined, a series of kinetic runs was conducted varying temperature (30–40 °C), initial molar excess of acetone to glycerol (3–12) and catalyst load (0.5–1% w/w) for this reaction in equilibrium. Different kinetic models based on potential laws and Eley–Rideal (ER) and Langmuir–Hinshelwood–Hougen–Watson (LHHW) equations were proposed to fit to the experimental data obtained. After physical and statistical discrimination, an ER accounting for the direct and reverse reaction was selected, with activation energies of 124.0 ± 12.9 kJ mol −1 and 127.3 ± 12.6 kJ mol −1 for the direct and reverse reaction, respectively, and enthalpy of adsorption of 128.0 ± 21.4 kJ mol −1 for the adsorption constant of water.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Funded by:EC | M-ERA.NET3EC| M-ERA.NET3Authors: Miguel Ladero Galán;handle: 20.500.14352/105947
Over the past few decades, the need for new, more accessible and renewable raw materials has become evident [...]
Fermentation arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fermentation10010059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fermentation arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fermentation10010059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:EC | M-ERA.NET3EC| M-ERA.NET3Yosra Snoussi; David Gonzalez-Miranda; Tomás Pedregal; Néji Besbes; Abderrahim Bouaid; Miguel Ladero;A novel and cost-effective heterogeneous catalyst for glycerol carbonate production through transesterification was developed by impregnating smectite clay with K2CO3. Comprehensive structural and chemical analyses, including X-ray diffraction Analysis (XRD), Scanning Electron Microscopy (SEM)-Electron Dispersion Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) surface area analysis measurements, were employed to characterize the catalysts. Among the various catalysts prepared, the one impregnated with 40 wt% K2CO3 on smectite and calcined at 550 °C exhibited the highest catalytic activity, primarily due to its superior basicity. To enhance the efficiency of the transesterification process, several reaction parameters were optimized, including the molar ratio between propylene carbonate and glycerol reactor loading of the catalyst and reaction temperature. The highest glycerol carbonate conversion rate, approximately 77.13% ± 1.2%, was achieved using the best catalyst under the following optimal conditions: 2 wt% reactor loading, 110 °C reaction temperature, 2:1 propylene carbonate to glycerol molar ratio, and 6h reaction duration. Furthermore, both the raw clay and the best calcined K2CO3-impregnated catalysts demonstrated remarkable stability, maintaining their high activity for up to four consecutive reaction cycles. Finally, a kinetic analysis was performed using kinetic data from several runs employing raw clay and the most active K2CO3-modified clay at different temperatures, observing that a simple reversible second-order potential kinetic model of the quasi-homogeneous type fits perfectly to such data in diverse temperature ranges.
International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms25042442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms25042442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Wojtusik, M.; Zurita Redondo, María Esther; Villar, J. C.; Ladero, M.; García-Ochoa, F.;The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2016License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.05.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2016License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.05.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC I. de la Torre; V. Martin-Dominguez; M. G. Acedos; J. Esteban; V. E. Santos; M. Ladero;pmid: 31187209
Orange peel waste (OPW) (peels, pulp and seeds) is an underutilised residue coming from the orange juice industry. Its classical applications are cattle feeding and composting, while they cannot ensure a total use of OPW, so landfilling is also common practice. On the other side, OPW is very rich in sugars, polysaccharides, essential oils and polyphenols, so there is a vast literature focused on the development and optimization of technologies and processes to several products from OPW. In this review, papers on OPW-based bioprocesses are visited, discovering a wide landscape that goes from the composting and biogas processes on detoxified OPW (deoiled) to bioprocesses to bioethanol, chemicals, flavours and polymers. All these processes are prone to integration within the 2nd-generation biorefinery framework.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-09929-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-09929-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:MDPI AG Funded by:EC | M-ERA.NET3EC| M-ERA.NET3Authors: Miguel Ladero; Jose Alberto Reche-Sainz; M. Esther Gallardo;Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying treatments for these disorders. The discovery of induced pluripotent stem cell (iPSC) technology has opened several promising opportunities in the field of HON research and the search for therapeutic approaches. This systematic review is focused on the two most frequent HONs (LHON and DOA) and on the recent studies related to the application of human iPSC technology in combination with biomaterials technology for their potential use in the development of RGC replacement therapies with the final aim of the improvement or even the restoration of the vision of HON patients. To this purpose, the combination of natural and synthetic biomaterials modified with peptides, neurotrophic factors, and other low- to medium-molecular weight compounds, mimicking the ocular extracellular matrices, with human iPSC or iPSC-derived cell retinal progenitors holds enormous potential to be exploited in the near future for the generation of transplantable RGC populations.
Bioengineering arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/bioengineering11010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioengineering arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/bioengineering11010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Santos De Dios, S. María; Carbajo, J. M.; Quintana, E.; Ibarra Trejo, David; Gómez, N.; Ladero, M.; Eugenio Martín, María Eugenia; Villar, J. C.;Bacterial cellulose (BC) synthesized by Gluconacetobacter sucrofermentans CECT 7291 seems to be a good option for the restoration of degraded paper. In this work BC layers are cultivated and purified by two different methods: an alkaline treatment when the culture media contains ethanol and a thermal treatment if the media is free from ethanol. The main goal of these tests was the characterization of BC layers measured in terms of tear and burst indexes, optical properties, SEM, X-ray diffraction, FTIR, degree of polymerization, static and dynamic contact angles, and mercury intrusion porosimetry. The BC layers were also evaluated in the same terms after an aging treatment. Results showed that BC has got high crystallinity index, low internal porosity, good mechanical properties and high stability over time, especially when purified by the alkaline treatment. These features make BC an adequate candidate for degraded paper reinforcement.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2015License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2014.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 56visibility views 56 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2015License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2014.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Priscilla Vergara; Félix García-Ochoa; Miguel Ladero; Soledad Gutiérrez; Juan C. Villar;Liquor recycle in lignocellulosic biomass fractionation with ethanol-water has been studied. Runs have been carried out in a 6 L tank reactor with liquor recirculation. The liquors obtained in six successive fractioning operations have been analyzed together with the solid phase remnant. Experimental results revealed that the number of re-uses reduces solids recovery (from 52.2 to 42.6%) and cellulose recovery (from 28.1 to 23.3%) with minor or no effect on the hemicelluloses and lignin removal. The more remarkable effect is an increase of the glucose yield (from 76.7 to 95.3% after enzymatic hydrolysis during 72 h). The accumulation of acetic acid in the spent liquors (until 1.3 g/L) seems to be responsible of the higher enzymatic hydrolysis yield, from 76.3 (first use) to 87.7% (fifth re-use). Liquor re-use is effective to improve the sustainability of the pre-treatment obtaining a cellulose-rich solid easy to hydrolysate to sugars reducing energy consumption.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 10 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Esteban, J.; Domínguez, E.; Ladero, M.; Garcia-Ochoa, F.;Abstract The biodiesel industry has been dealing with the issue of glycerol oversupply for some time, leading to blossoming research regarding its valorisation to yield value-added derivatives. This work presents the production of glycerol carbonate through the transesterification of glycerol with dimethyl carbonate (DMC) and ethylene carbonate (EC), also obtaining valuable methanol and ethylene glycol, respectively. CH 3 OK was used as catalyst, with kinetic runs being conducted under mild operation conditions: temperature (50–70 °C using DMC; 40–60 °C using EC), molar excess of organic carbonate to glycerol (1.5–3) and low catalyst loads (1000–2500 ppm for DMC; 50–150 ppm for EC). Kinetic models were proposed, fitted and verified considering the transition from a biphasic to a single phase liquid system and a first order deactivation of the catalyst. In the reaction with DMC, the model contemplates an irreversible reaction with activation energy of 28.4 ± 1.5 kJ·mol − 1 and deactivation constant of 0.03 ± 0.01 min − 1 . Using EC, the activation energies were 83.0 ± 1.6 kJ·mol − 1 and 58.7 ± 11.4 kJ·mol − 1 for the direct and reverse reactions, respectively, and the deactivation constant was 0.11 ± 0.02 min − 1 . This catalyst demonstrates a much higher activity for these reactions than K 2 CO 3 .
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryFuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryFuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:Elsevier BV Authors: Wojtusik Wojtusik, Mateusz; VERGARA ALARCÓN, PRISCILLA; VILLAR, JUAN CARLOS; Ladero, Miguel; +1 AuthorsWojtusik Wojtusik, Mateusz; VERGARA ALARCÓN, PRISCILLA; VILLAR, JUAN CARLOS; Ladero, Miguel; Garcia-Ochoa, Felix;Enzymatic hydrolysis of three pre-treated lignocellulosic biomasses -LCB- (wheat straw-WS-, corn stover-CSV- and cardoon stems -CS-) is studied. These biomasses were pre-treated by two methods: diluted sulfuric acid and acid ethanol-water extraction at six severity levels (H values). Pretreated solid fractions were hydrolyzed with commercial enzyme cocktails at standard conditions. A first-order kinetic fractal model was fitted to the experimental results. This model accurately describes the hydrolysis of all biomasses at all pre-treatment conditions studied. The results show that the formal first-order kinetic constant k depends on the biomass nature. The hydrolysis rate increases as the pre-treatment severity does, while the fractal exponent value h decreases. With these pre-treatments, and in terms of k and h, WS is highly reactive and, at medium H with EW pretreatment, highly accessible; CSV has a low reactivity and high accessibility and CS has the lowest reactivity and an increasing accessibility as severity rises.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 48 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Esteban, J.; Ladero, M.; García-Ochoa, F.;Abstract Synthesis of solketal from acetone and glycerol is approached in this work through a batch process in the absence of solvents. A heterogeneous catalysis approach was employed using the resin Lewatit GF101 as catalyst after selection from a few other sulphonic ion exchange resins. An initial study of the external mass transfer revealed that a stirring rate of 750 rpm sufficed for the external mass transfer not to be the rate limiting step. Similarly, a study of the internal mass transfer showed that for particle sizes of 190 μm the maximum reaction rate was achieved. Once the optimal stirring and particle size conditions were determined, a series of kinetic runs was conducted varying temperature (30–40 °C), initial molar excess of acetone to glycerol (3–12) and catalyst load (0.5–1% w/w) for this reaction in equilibrium. Different kinetic models based on potential laws and Eley–Rideal (ER) and Langmuir–Hinshelwood–Hougen–Watson (LHHW) equations were proposed to fit to the experimental data obtained. After physical and statistical discrimination, an ER accounting for the direct and reverse reaction was selected, with activation energies of 124.0 ± 12.9 kJ mol −1 and 127.3 ± 12.6 kJ mol −1 for the direct and reverse reaction, respectively, and enthalpy of adsorption of 128.0 ± 21.4 kJ mol −1 for the adsorption constant of water.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Funded by:EC | M-ERA.NET3EC| M-ERA.NET3Authors: Miguel Ladero Galán;handle: 20.500.14352/105947
Over the past few decades, the need for new, more accessible and renewable raw materials has become evident [...]
Fermentation arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fermentation10010059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fermentation arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fermentation10010059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:EC | M-ERA.NET3EC| M-ERA.NET3Yosra Snoussi; David Gonzalez-Miranda; Tomás Pedregal; Néji Besbes; Abderrahim Bouaid; Miguel Ladero;A novel and cost-effective heterogeneous catalyst for glycerol carbonate production through transesterification was developed by impregnating smectite clay with K2CO3. Comprehensive structural and chemical analyses, including X-ray diffraction Analysis (XRD), Scanning Electron Microscopy (SEM)-Electron Dispersion Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) surface area analysis measurements, were employed to characterize the catalysts. Among the various catalysts prepared, the one impregnated with 40 wt% K2CO3 on smectite and calcined at 550 °C exhibited the highest catalytic activity, primarily due to its superior basicity. To enhance the efficiency of the transesterification process, several reaction parameters were optimized, including the molar ratio between propylene carbonate and glycerol reactor loading of the catalyst and reaction temperature. The highest glycerol carbonate conversion rate, approximately 77.13% ± 1.2%, was achieved using the best catalyst under the following optimal conditions: 2 wt% reactor loading, 110 °C reaction temperature, 2:1 propylene carbonate to glycerol molar ratio, and 6h reaction duration. Furthermore, both the raw clay and the best calcined K2CO3-impregnated catalysts demonstrated remarkable stability, maintaining their high activity for up to four consecutive reaction cycles. Finally, a kinetic analysis was performed using kinetic data from several runs employing raw clay and the most active K2CO3-modified clay at different temperatures, observing that a simple reversible second-order potential kinetic model of the quasi-homogeneous type fits perfectly to such data in diverse temperature ranges.
International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms25042442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms25042442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu