- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Article 2016 United KingdomPublisher:IEEE Authors: Martinez Cesena, Eduardo Alejandro; Mancarella, P.;This paper presents a new approach to assess and improve the environmental and economic performance of integrated electricity and heat district energy systems in light of (i) optimal operation of available multi-energy components (e.g., cogeneration and heat pumps) and (ii) energy exchanges within the district through internal electricity and heat networks. The latter is particularly attractive as, instead of constraining energy flows within each building, it enables the production and consumption of energy in the most attractive locations (e.g., in buildings that can accommodate photovoltaic panels). The proposed methodology is formulated as a mixed integer linear programming problem, and demonstrated with a real UK district comprising internal electricity and heat networks and several buildings. The results highlight the attractiveness of optimising multiple energy vectors, particularly in light of energy exchanges between buildings, in economic and environmental terms.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryConference object . 2016Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2016.7540972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryConference object . 2016Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2016.7540972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2016 Cyprus, United KingdomPublisher:IEEE Panteli, M.; Nikolaidis, A. I.; Charalambous, Charalambos A.; Zhou, Y.; Wood, F. R.; Glynn, S.; Mancarella, P.; Panteli, M.; Nikolaidis, A. I.; Charalambous, Charalambos A.; Zhou, Y.; Wood, F. R.; Glynn, S.; Mancarella, P.;A systematic resilience and flexibility analysis of future power systems to address the impacts of climate change and Renewable Energy penetration is becoming increasingly important, as it is expected to have a great effect on the demand and supply portfolios. Depending on the intrinsic characteristics of each power system, different aspects have to be considered in the analysis since this cannot be universal for all power systems. To highlight this, the paper presents two different case studies pertaining to the Great Britain and Cyprus networks respectively. Firstly, the resilience of the Great Britain transmission network to future demand and supply scenarios (2020, 2030 and 2050) is evaluated using a reduced version of the current Great Britain transmission network. Subsequently, the future flexibility requirements of the isolated network of Cyprus are appropriately benchmarked against future energy mix scenarios that involve conventional generation and renewable energy penetration.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2016Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/melcon...Conference object . 2016 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefGNOSIS Institutional RepositoryConference object . 2016Data sources: GNOSIS Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2016Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/melcon...Conference object . 2016 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefGNOSIS Institutional RepositoryConference object . 2016Data sources: GNOSIS Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Good, Nicholas; Ellis, Keith; Mancarella, Pierluigi;Demand for flexibility in electricity systems and the transition to the Smart Grid is increasing opportunities for demand response (DR). However, there are many barriers which prevent the full potential of DR being realised. Unlocking of this potential, through identification of DR enablers, can be aided through systematic classification and analysis of DR barriers. To this end, while previous works mostly focused on individual aspects, this paper develops a comprehensive ‘socio-techno-economic’ review, classification and analysis of DR barriers and enablers in a Smart Grid context. This provides an intellectual framework which may be used to underpin further work on the study and integration of DR. DR barriers are classified as either fundamental (i.e., relating to intrinsic human nature/essential enabling technology) or secondary (i.e., relating to anthropogenic institutions/or system feedbacks). Fundamental barriers are defined as economic, social or technological, whilst secondary barriers relate to political regulatory aspects, design of markets, physical (electrical network) issues, or to general understanding of DR. Subsequently, associated enablers for the defined barriers are suggested. Consideration of technical and commercial/social aspects for both power system and information and communication technology (the “internet of things”) domains provides a foundational contribution to improve understanding of DR within the Smart Grid paradigm. Finally, the complexity resulting from connections between various barriers, enablers and the energy system generally, and the existence of the signature characteristics of complex systems is acknowledged and implications discussed.
Renewable and Sustai... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 219 citations 219 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2011 United KingdomPublisher:IEEE Authors: Papadaskalopoulos, Dimitrios; Manitsas, Efthymios; Mancarella, Pierluigi; Strbac, Goran;This paper introduces an original methodology for the co-optimization of operating and investments costs associated with the deployment of active management strategies in power distribution networks. The resulting large-scale optimization problem is solved using Benders decomposition. The concept is demonstrated using a module-based generic distribution system model. Case studies for different active management strategies (involving generation curtailment, reactive power compensation and transformer tap changers) and various DG penetration and density levels are presented and analyzed.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2011Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2011.6019293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2011Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2011.6019293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2009 ItalyPublisher:IEEE Authors: BOICEA, ADRIAN-VALENTIN; CHICCO, GIANFRANCO; Mancarella, Pierluigi;handle: 11583/2278841
This paper discusses optimal operation strategies of a cluster of microturbines (MTs) for electrical load-following applications. Cluster operation ensures higher operational flexibility, but raises the issue of taking into account the partial-load MT characteristics, in terms of energy efficiency and pollutant emissions. In particular, from experimental results the NO x and CO emissions exhibit nonlinear and to some extent complementary trends at different partial-load levels. Hence, individual optimizations of fuel consumption and emission reduction are first carried out in this paper to show the conflicting nature of such objectives. Then, multi-objective optimization is performed to directly determine the best-known Pareto front. For this purpose, a procedure based on evolutionary programming is illustrated and applied to a practical case study. The results point out the degree of trade-off that can be sought when minimizing the local environmental impact of such distributed energy systems.
https://doi.org/10.1... arrow_drop_down Publications Open Repository TOrinoConference object . 2009Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2009.5282263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down Publications Open Repository TOrinoConference object . 2009Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2009.5282263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017Embargo end date: 01 Jan 2017 United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, NetherlandsPublisher:Elsevier BV Rolf Frischknecht; Christian Breyer; Arthur Keller; Michael Carbajales-Dale; Sgouris Sgouridis; Garvin Heath; Garvin Heath; W.C. Sinke; Philippe Stolz; Nicola Pearsall; Mariska de Wild-Scholten; Arnulf Jæger-Waldau; Marco Raugei; Marco Raugei; C. J. Barnhart; Vasilis Fthenakis; Vasilis Fthenakis; David J. Murphy; Adam Siegel; Ugo Bardi; Alastair Buckley; Pierluigi Mancarella; Denes Csala; Chris Jones; Enrica Leccisi;A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt ‘extended’ boundaries for their analysis of PV without acknowledging that such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. We herein provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and ‘extended’ system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.
CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Northumbria Research LinkArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Oxford Brookes University: RADARArticle . 2017License: CC BY NC NDFull-Text: https://radar.brookes.ac.uk/radar/file/ac7e8eaa-f62f-4701-bded-b8d030deac98/1/raugei2017energy.pdfData sources: Oxford Brookes University: RADARUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Energy PolicyArticle . 2017License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryOxford Brookes University: RADAROther literature type . 2017License: CC BY NC NDData sources: Oxford Brookes University: RADARLancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Northumbria Research LinkArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Oxford Brookes University: RADARArticle . 2017License: CC BY NC NDFull-Text: https://radar.brookes.ac.uk/radar/file/ac7e8eaa-f62f-4701-bded-b8d030deac98/1/raugei2017energy.pdfData sources: Oxford Brookes University: RADARUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Energy PolicyArticle . 2017License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryOxford Brookes University: RADAROther literature type . 2017License: CC BY NC NDData sources: Oxford Brookes University: RADARLancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Panteli, Mathaios; Trakas, Dimitris N.; Mancarella, Pierluigi; Hatziargyriou, N D;Power systems have typically been designed to be reliable to expected, low-impact high-frequency outages. In contrast, extreme events, driven for instance by extreme weather and natural disasters, happen with low-probability, but can have a high impact. The need for power systems, possibly the most critical infrastructures in the world, to become resilient to such events is becoming compelling. However, there is still little clarity as to this relatively new concept. On these premises, this paper provides an introduction to the fundamental concepts of power systems resilience and to the use of hardening and smart operational strategies to improve it. More specifically, first the resilience trapezoid is introduced as visual tool to reflect the behavior of a power system during a catastrophic event. Building on this, the key resilience features that a power system should boast are then defined, along with a discussion on different possible hardening and smart, operational resilience enhancement strategies. Further, the so-called $\Phi \Lambda {E}\Pi $ resilience assessment framework is presented, which includes a set of resilience metrics capable of modeling and quantifying the resilience performance of a power system subject to catastrophic events. A case study application with a 29-bus test version of the Great Britain transmission network is carried out to investigate the impacts of extreme windstorms. The effects of different hardening and smart resilience enhancement strategies are also explored, thus demonstrating the practicality of the different concepts presented.
Proceedings of the I... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryProceedings of the IEEEArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jproc.2017.2691357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 356 citations 356 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryProceedings of the IEEEArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jproc.2017.2691357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2014 CroatiaPublisher:IEEE Authors: Pierluigi Mancarella; Tomislav Capuder;This paper presents a unified techno-economic and environmental mathematical model for market driven operation optimization of different Distributed Multi-Generation (DMG) options in district heating schemes. The identified concepts of DMG are capable of providing significant operational benefits in that they have the flexibility to respond to electricity market signals, which is particularly important in the presence of a less flexible and more intermittency dominated power system. At the same time, the formulation allows assessment of the environmental benefits under different scenarios. The optimization formulation cast as a mixed integer linear program (MILP), is capable to incorporate the use of different multi-energy technologies and explicitly model inter-temporal constraints that allow assessment of the benefits of thermal storage, amongst the others.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIConference object . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2014.7038404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIConference object . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2014.7038404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, CroatiaPublisher:Elsevier BV Authors: Tomislav Capuder; Tomislav Capuder; Pierluigi Mancarella;It is arguable how much flexibility and efficiency from coupling different energy vectors through available technologies is exploited in current energy systems. In particular, in spite of the growing interest for the multi-energy concept, there are very few models capable of clearly explaining the benefits that can be derived from integration of complementary technologies such as cogeneration, electric heat pumps and thermal storage. In this light, this paper introduces a comprehensive analysis framework and a relevant unified and synthetic Mixed-Integer Linear Programming optimization model suitable for evaluating the techno-economic and environmental characteristics of different Distributed Multi-Generation (DMG) options. Each option's operational performance and flexibility to respond to electricity market signals are analysed in detail and assessed against the needed investment costs in different contexts. Numerical case studies focus on highlighting the flexibility benefits that can be gained in economic terms from multi-energy system integration in district heating (DH) applications. Detailed sensitivity analyses of different DMG configurations also clearly show what economic as well as environmental performance (at both global and local levels) can be expected in current and future scenarios when coupling different energy vectors and complementary technologies in a multi-energy context.
Energy arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryCroatian Scientific Bibliography - CROSBIArticle . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryCroatian Scientific Bibliography - CROSBIArticle . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Alejandro Navarro-Espinosa; Pierluigi Mancarella;Electrification of heating by making use of the Electric Heat Pump (EHP) technology powered by increasing shares of electricity renewable sources is seen as a potential key approach to decarbonise the energy sector in many countries, and especially in the UK. However, the widespread use of EHPs in substitution of fuel boilers might cause significant issues in terms of electrical distribution network impact, particularly at the low voltage (LV) level. This has not been addressed properly in the studies carried out so far also due to lack of available data and suitable models. In this light, this paper introduces a novel and comprehensive probabilistic methodology based on Monte Carlo simulations and a relevant tool to assess the impact of EHPs on LV distribution networks. Real electricity and heat profiles are taken as a starting point of the studies. Both Air Source Heat Pump (ASHP) and Ground Source Heat Pump (GSHP) types are modeled as black boxes with performance and heat capacity characteristics changing with operating conditions according to manufacturers’ curves, addressing in particular the need for and impact of different types of Auxiliary Heating (AH) systems. A specific LV network analysis tool has been built that integrates the three-phase unbalanced power flow solution engine OpenDSS with the developed EHP models and is capable of properly addressing single-phase connections, adequately modeling the unbalanced nature of LV networks. Different metrics are used to quantify the impact of the considered technologies, with emphasis on thermal and voltage limits, according to current engineering standards. To cope with the many relevant uncertainties (EHP size, location in the network, operation pattern, reactive power consumption, network headroom, etc.), various case studies and sensitivity analyses have been carried out for representative suburban areas in the UK and for different scenarios in order to exemplify the developed methodology and illustrate the main drivers for impact and trends in the different cases. The tool can be adapted to perform studies for different situations and scenarios and can be used as decision making support by network operators, energy planners, policy makers, and so on, to better quantify the potential implications of large scale electrification of heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article 2016 United KingdomPublisher:IEEE Authors: Martinez Cesena, Eduardo Alejandro; Mancarella, P.;This paper presents a new approach to assess and improve the environmental and economic performance of integrated electricity and heat district energy systems in light of (i) optimal operation of available multi-energy components (e.g., cogeneration and heat pumps) and (ii) energy exchanges within the district through internal electricity and heat networks. The latter is particularly attractive as, instead of constraining energy flows within each building, it enables the production and consumption of energy in the most attractive locations (e.g., in buildings that can accommodate photovoltaic panels). The proposed methodology is formulated as a mixed integer linear programming problem, and demonstrated with a real UK district comprising internal electricity and heat networks and several buildings. The results highlight the attractiveness of optimising multiple energy vectors, particularly in light of energy exchanges between buildings, in economic and environmental terms.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryConference object . 2016Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2016.7540972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryConference object . 2016Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2016.7540972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2016 Cyprus, United KingdomPublisher:IEEE Panteli, M.; Nikolaidis, A. I.; Charalambous, Charalambos A.; Zhou, Y.; Wood, F. R.; Glynn, S.; Mancarella, P.; Panteli, M.; Nikolaidis, A. I.; Charalambous, Charalambos A.; Zhou, Y.; Wood, F. R.; Glynn, S.; Mancarella, P.;A systematic resilience and flexibility analysis of future power systems to address the impacts of climate change and Renewable Energy penetration is becoming increasingly important, as it is expected to have a great effect on the demand and supply portfolios. Depending on the intrinsic characteristics of each power system, different aspects have to be considered in the analysis since this cannot be universal for all power systems. To highlight this, the paper presents two different case studies pertaining to the Great Britain and Cyprus networks respectively. Firstly, the resilience of the Great Britain transmission network to future demand and supply scenarios (2020, 2030 and 2050) is evaluated using a reduced version of the current Great Britain transmission network. Subsequently, the future flexibility requirements of the isolated network of Cyprus are appropriately benchmarked against future energy mix scenarios that involve conventional generation and renewable energy penetration.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2016Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/melcon...Conference object . 2016 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefGNOSIS Institutional RepositoryConference object . 2016Data sources: GNOSIS Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2016Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/melcon...Conference object . 2016 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefGNOSIS Institutional RepositoryConference object . 2016Data sources: GNOSIS Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Good, Nicholas; Ellis, Keith; Mancarella, Pierluigi;Demand for flexibility in electricity systems and the transition to the Smart Grid is increasing opportunities for demand response (DR). However, there are many barriers which prevent the full potential of DR being realised. Unlocking of this potential, through identification of DR enablers, can be aided through systematic classification and analysis of DR barriers. To this end, while previous works mostly focused on individual aspects, this paper develops a comprehensive ‘socio-techno-economic’ review, classification and analysis of DR barriers and enablers in a Smart Grid context. This provides an intellectual framework which may be used to underpin further work on the study and integration of DR. DR barriers are classified as either fundamental (i.e., relating to intrinsic human nature/essential enabling technology) or secondary (i.e., relating to anthropogenic institutions/or system feedbacks). Fundamental barriers are defined as economic, social or technological, whilst secondary barriers relate to political regulatory aspects, design of markets, physical (electrical network) issues, or to general understanding of DR. Subsequently, associated enablers for the defined barriers are suggested. Consideration of technical and commercial/social aspects for both power system and information and communication technology (the “internet of things”) domains provides a foundational contribution to improve understanding of DR within the Smart Grid paradigm. Finally, the complexity resulting from connections between various barriers, enablers and the energy system generally, and the existence of the signature characteristics of complex systems is acknowledged and implications discussed.
Renewable and Sustai... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 219 citations 219 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2011 United KingdomPublisher:IEEE Authors: Papadaskalopoulos, Dimitrios; Manitsas, Efthymios; Mancarella, Pierluigi; Strbac, Goran;This paper introduces an original methodology for the co-optimization of operating and investments costs associated with the deployment of active management strategies in power distribution networks. The resulting large-scale optimization problem is solved using Benders decomposition. The concept is demonstrated using a module-based generic distribution system model. Case studies for different active management strategies (involving generation curtailment, reactive power compensation and transformer tap changers) and various DG penetration and density levels are presented and analyzed.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2011Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2011.6019293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2011Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2011.6019293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2009 ItalyPublisher:IEEE Authors: BOICEA, ADRIAN-VALENTIN; CHICCO, GIANFRANCO; Mancarella, Pierluigi;handle: 11583/2278841
This paper discusses optimal operation strategies of a cluster of microturbines (MTs) for electrical load-following applications. Cluster operation ensures higher operational flexibility, but raises the issue of taking into account the partial-load MT characteristics, in terms of energy efficiency and pollutant emissions. In particular, from experimental results the NO x and CO emissions exhibit nonlinear and to some extent complementary trends at different partial-load levels. Hence, individual optimizations of fuel consumption and emission reduction are first carried out in this paper to show the conflicting nature of such objectives. Then, multi-objective optimization is performed to directly determine the best-known Pareto front. For this purpose, a procedure based on evolutionary programming is illustrated and applied to a practical case study. The results point out the degree of trade-off that can be sought when minimizing the local environmental impact of such distributed energy systems.
https://doi.org/10.1... arrow_drop_down Publications Open Repository TOrinoConference object . 2009Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2009.5282263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down Publications Open Repository TOrinoConference object . 2009Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ptc.2009.5282263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017Embargo end date: 01 Jan 2017 United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, NetherlandsPublisher:Elsevier BV Rolf Frischknecht; Christian Breyer; Arthur Keller; Michael Carbajales-Dale; Sgouris Sgouridis; Garvin Heath; Garvin Heath; W.C. Sinke; Philippe Stolz; Nicola Pearsall; Mariska de Wild-Scholten; Arnulf Jæger-Waldau; Marco Raugei; Marco Raugei; C. J. Barnhart; Vasilis Fthenakis; Vasilis Fthenakis; David J. Murphy; Adam Siegel; Ugo Bardi; Alastair Buckley; Pierluigi Mancarella; Denes Csala; Chris Jones; Enrica Leccisi;A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt ‘extended’ boundaries for their analysis of PV without acknowledging that such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. We herein provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and ‘extended’ system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.
CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Northumbria Research LinkArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Oxford Brookes University: RADARArticle . 2017License: CC BY NC NDFull-Text: https://radar.brookes.ac.uk/radar/file/ac7e8eaa-f62f-4701-bded-b8d030deac98/1/raugei2017energy.pdfData sources: Oxford Brookes University: RADARUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Energy PolicyArticle . 2017License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryOxford Brookes University: RADAROther literature type . 2017License: CC BY NC NDData sources: Oxford Brookes University: RADARLancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Northumbria Research LinkArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Oxford Brookes University: RADARArticle . 2017License: CC BY NC NDFull-Text: https://radar.brookes.ac.uk/radar/file/ac7e8eaa-f62f-4701-bded-b8d030deac98/1/raugei2017energy.pdfData sources: Oxford Brookes University: RADARUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Energy PolicyArticle . 2017License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryOxford Brookes University: RADAROther literature type . 2017License: CC BY NC NDData sources: Oxford Brookes University: RADARLancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Panteli, Mathaios; Trakas, Dimitris N.; Mancarella, Pierluigi; Hatziargyriou, N D;Power systems have typically been designed to be reliable to expected, low-impact high-frequency outages. In contrast, extreme events, driven for instance by extreme weather and natural disasters, happen with low-probability, but can have a high impact. The need for power systems, possibly the most critical infrastructures in the world, to become resilient to such events is becoming compelling. However, there is still little clarity as to this relatively new concept. On these premises, this paper provides an introduction to the fundamental concepts of power systems resilience and to the use of hardening and smart operational strategies to improve it. More specifically, first the resilience trapezoid is introduced as visual tool to reflect the behavior of a power system during a catastrophic event. Building on this, the key resilience features that a power system should boast are then defined, along with a discussion on different possible hardening and smart, operational resilience enhancement strategies. Further, the so-called $\Phi \Lambda {E}\Pi $ resilience assessment framework is presented, which includes a set of resilience metrics capable of modeling and quantifying the resilience performance of a power system subject to catastrophic events. A case study application with a 29-bus test version of the Great Britain transmission network is carried out to investigate the impacts of extreme windstorms. The effects of different hardening and smart resilience enhancement strategies are also explored, thus demonstrating the practicality of the different concepts presented.
Proceedings of the I... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryProceedings of the IEEEArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jproc.2017.2691357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 356 citations 356 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryProceedings of the IEEEArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jproc.2017.2691357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2014 CroatiaPublisher:IEEE Authors: Pierluigi Mancarella; Tomislav Capuder;This paper presents a unified techno-economic and environmental mathematical model for market driven operation optimization of different Distributed Multi-Generation (DMG) options in district heating schemes. The identified concepts of DMG are capable of providing significant operational benefits in that they have the flexibility to respond to electricity market signals, which is particularly important in the presence of a less flexible and more intermittency dominated power system. At the same time, the formulation allows assessment of the environmental benefits under different scenarios. The optimization formulation cast as a mixed integer linear program (MILP), is capable to incorporate the use of different multi-energy technologies and explicitly model inter-temporal constraints that allow assessment of the benefits of thermal storage, amongst the others.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIConference object . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2014.7038404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIConference object . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pscc.2014.7038404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, CroatiaPublisher:Elsevier BV Authors: Tomislav Capuder; Tomislav Capuder; Pierluigi Mancarella;It is arguable how much flexibility and efficiency from coupling different energy vectors through available technologies is exploited in current energy systems. In particular, in spite of the growing interest for the multi-energy concept, there are very few models capable of clearly explaining the benefits that can be derived from integration of complementary technologies such as cogeneration, electric heat pumps and thermal storage. In this light, this paper introduces a comprehensive analysis framework and a relevant unified and synthetic Mixed-Integer Linear Programming optimization model suitable for evaluating the techno-economic and environmental characteristics of different Distributed Multi-Generation (DMG) options. Each option's operational performance and flexibility to respond to electricity market signals are analysed in detail and assessed against the needed investment costs in different contexts. Numerical case studies focus on highlighting the flexibility benefits that can be gained in economic terms from multi-energy system integration in district heating (DH) applications. Detailed sensitivity analyses of different DMG configurations also clearly show what economic as well as environmental performance (at both global and local levels) can be expected in current and future scenarios when coupling different energy vectors and complementary technologies in a multi-energy context.
Energy arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryCroatian Scientific Bibliography - CROSBIArticle . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional RepositoryCroatian Scientific Bibliography - CROSBIArticle . 2014Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Alejandro Navarro-Espinosa; Pierluigi Mancarella;Electrification of heating by making use of the Electric Heat Pump (EHP) technology powered by increasing shares of electricity renewable sources is seen as a potential key approach to decarbonise the energy sector in many countries, and especially in the UK. However, the widespread use of EHPs in substitution of fuel boilers might cause significant issues in terms of electrical distribution network impact, particularly at the low voltage (LV) level. This has not been addressed properly in the studies carried out so far also due to lack of available data and suitable models. In this light, this paper introduces a novel and comprehensive probabilistic methodology based on Monte Carlo simulations and a relevant tool to assess the impact of EHPs on LV distribution networks. Real electricity and heat profiles are taken as a starting point of the studies. Both Air Source Heat Pump (ASHP) and Ground Source Heat Pump (GSHP) types are modeled as black boxes with performance and heat capacity characteristics changing with operating conditions according to manufacturers’ curves, addressing in particular the need for and impact of different types of Auxiliary Heating (AH) systems. A specific LV network analysis tool has been built that integrates the three-phase unbalanced power flow solution engine OpenDSS with the developed EHP models and is capable of properly addressing single-phase connections, adequately modeling the unbalanced nature of LV networks. Different metrics are used to quantify the impact of the considered technologies, with emphasis on thermal and voltage limits, according to current engineering standards. To cope with the many relevant uncertainties (EHP size, location in the network, operation pattern, reactive power consumption, network headroom, etc.), various case studies and sensitivity analyses have been carried out for representative suburban areas in the UK and for different scenarios in order to exemplify the developed methodology and illustrate the main drivers for impact and trends in the different cases. The tool can be adapted to perform studies for different situations and scenarios and can be used as decision making support by network operators, energy planners, policy makers, and so on, to better quantify the potential implications of large scale electrification of heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu