- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 13 Apr 2021 China (People's Republic of), Hong Kong, Singapore, China (People's Republic of), United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | The Origin of Non-Radiati..., EC | HYPERIONUKRI| The Origin of Non-Radiative Losses in Metal Halide Perovskites ,EC| HYPERIONGéraud Delport; Samuel D. Stranks; Krzysztof Galkowski; Krzysztof Galkowski; Alan Baldwin; Rosemonde Chahbazian; Kai Leng; Kian Ping Loh;Halide perovskites are versatile semiconductors with applications including photovoltaics and light-emitting devices, having modular optoelectronic properties realizable through composition and dimensionality tuning. Layered Ruddlesden-Popper perovskites are particularly interesting due to their unique 2D character and charge carrier dynamics. However, long-range energy transport through exciton diffusion in these materials is not understood or realized. Here, local time-resolved luminescence mapping techniques are employed to visualize exciton transport in exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. Two distinct transport regimes are uncovered, depending on the temperature range. Above 100 K, diffusion is mediated by thermally activated hopping processes between localized states. At lower temperatures, a nonuniform energy landscape emerges in which transport is dominated by downhill energy transfer to lower-energy states, leading to long-range transport over hundreds of nanometers. Efficient, long-range, and switchable downhill transfer offers exciting possibilities for controlled directional long-range transport in these 2D materials for new applications.
The Journal of Physi... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91060Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.1c00823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91060Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.1c00823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2016Embargo end date: 01 Jan 2015 France, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | EUROMAGNET II, EC | HYPEREC| EUROMAGNET II ,EC| HYPERAuthors: Jacob Tse-Wei Wang; Robin J. Nicholas; Krzysztof Galkowski; Krzysztof Galkowski; +8 AuthorsJacob Tse-Wei Wang; Robin J. Nicholas; Krzysztof Galkowski; Krzysztof Galkowski; Anatolie A. Mitioglu; Paulina Plochocka; Thomas Stergiopoulos; Oliver Portugall; Samuel D. Stranks; Atsuhiko Miyata; Giles E. Eperon; Henry J. Snaith;The reduced effective mass (μ) and excitonic Rydberg (R*) are measured by magneto-optics for new perovskite semiconductors.
Energy & Environment... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: DataciteEnergy & Environmental ScienceArticle . 2016 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee03435c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 618 citations 618 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: DataciteEnergy & Environmental ScienceArticle . 2016 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee03435c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Embargo end date: 14 Aug 2017 United States, Italy, United Kingdom, France, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SOLAR BEYOND SILICON, UKRI | Membership of the UK to t...EC| SOLAR BEYOND SILICON ,UKRI| Membership of the UK to the European Magnetic Field LaboratoryAuthors: Robin J. Nicholas; Mojtaba Abdi-Jalebi; Paulina Plochocka; Alexander R. Pascoe; +17 AuthorsRobin J. Nicholas; Mojtaba Abdi-Jalebi; Paulina Plochocka; Alexander R. Pascoe; Nan Zhang; Atsuhiko Miyata; Yi-Bing Cheng; Krzysztof Galkowski; Krzysztof Galkowski; Roberto Brenes; Anita Ho-Baillie; Arman Mahboubi Soufiani; Samuel D. Stranks; Samuel D. Stranks; Oliver Portugall; Martin A. Green; Joanna Urban; Trevor Young; Zhuo Yang; Alessandro Surrente; Vladimir Bulovic;handle: 11573/1397871 , 1721.1/124562
The authors directly show that grain size and quality have a negligible impact on the excitonic characteristics of perovskite semiconductors.
DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2019License: CC BY NC SAFull-Text: http://dx.doi.org/10.1039/c7ee00685cData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1039/c7ee...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee00685c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2019License: CC BY NC SAFull-Text: http://dx.doi.org/10.1039/c7ee00685cData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1039/c7ee...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee00685c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2017Embargo end date: 01 Jan 2016 France, Moldova (Republic of), United Kingdom, Italy, Moldova (Republic of)Publisher:Royal Society of Chemistry (RSC) Funded by:EC | HYPER, EC | EUROMAGNET II, EC | MESOEC| HYPER ,EC| EUROMAGNET II ,EC| MESOGalkowski , K.; Mitioglu, A.A.; Surrente, A.; Yang, Z.; Maude, D.; Kossacki, P.; Eperon , G.; Wang, J.; Snaith, H.; Plochocka, P.; Płochocka, P.; Nicholas, R.;pmid: 28225143
handle: 11573/1397879
The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI$_{3}$, MAPbI$_{3-x}$Cl$_{x}$, FA (FormAmidinium)PbI$_{3}$ and FAPbBr$_{3}$ are having a tremendous impact on the field of photovoltaic cells due to their ease of deposition and efficiencies, but device performance can be significanly affected by inhomogeneities. Here we report a study of temperature dependent micro-photoluminescence which shows a strong spatial inhomogeneity related to the presence of microcrystalline grains, which can be both light and dark. In all of the tri-iodide based materials there is evidence that the tetragonal to orthorhombic phase transition observed around 160K does not occur uniformly across the sample with domain formation related to the underlying microcrystallite grains, some of which remain in the high temperature, tetragonal, phase even at very low temperatures. At low temperature the tetragonal domains can be significantly influenced by local defects in the layers. In FAPbBr$_{3}$ a more macroscopic domain structure is observed with large numbers of grains forming phase correlated regions. Main text + supplementary information
Nanoscale arrow_drop_down Instrumentul Bibliometric Național (IBN)Article . 2017Data sources: Instrumentul Bibliometric Național (IBN)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7nr00355b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nanoscale arrow_drop_down Instrumentul Bibliometric Național (IBN)Article . 2017Data sources: Instrumentul Bibliometric Național (IBN)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7nr00355b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 08 Aug 2022 United KingdomPublisher:Wiley Funded by:EC | ConPLED, UKRI | Affordable Perovskite Sol..., UKRI | High-Efficiency Flexible ... +3 projectsEC| ConPLED ,UKRI| Affordable Perovskite Solar Irrigation Systems for Small-holder Farmers in Ethiopia (APSISSFE) ,UKRI| High-Efficiency Flexible and Scalable Halide-Perovskite Solar Modules ,UKRI| The Origin of Non-Radiative Losses in Metal Halide Perovskites ,EC| HYPERION ,UKRI| Cambridge-AMOLF Collaboration on Photonic and Optoelectronic Control of Thin-Film LEDs and Solar CellsRuggeri, Edoardo; Anaya, Miguel; Gałkowski, Krzysztof; Abfalterer, Anna; Chiang, Yu‐Hsien; Ji, Kangyu; Andaji‐Garmaroudi, Zahra; Stranks, Samuel D.;pmid: 35866352
Mixed‐halide mixed‐cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap‐tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable‐pitch synchrotron grazing‐incidence wide‐angle X‐ray scattering technique is used to track the surface and bulk structural changes in mixed‐halide mixed‐cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality‐ and depth‐dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out‐of‐plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de‐ and re‐mixing competitions and their impact on device longevity. These operando techniques allow real‐time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202202163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202202163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 21 Aug 2019 France, United KingdomPublisher:Wiley Funded by:EC | HYPERIONEC| HYPERIONSamuel D. Stranks; Sebastian Mackowski; Krzysztof Galkowski; Kangyu Ji; Camille Stavrakas; Edward P. Booker; Edoardo Ruggeri; Kyle Frohna; Robert Kudrawiec; Paulina Plochocka; Szymon J. Zelewski; Szymon J. Zelewski;AbstractGrain size in polycrystalline halide perovskite films is known to have an impact on the optoelectronic properties of the films, but its influence on their soft structural properties and phase transitions is unclear. Here, temperature‐dependent X‐ray diffraction, absorption, and macro‐ and micro‐photoluminescence measurements are used to investigate the tetragonal to orthorhombic phase transition in thin methylammonium lead iodide films with grain sizes ranging from the micrometer scale down to the tens of nanometer scale. It is shown that the phase transition nominally at ≈150 K is increasingly suppressed with decreasing grain size and, in the smallest grains, the first evidence of a phase transition is only seen at temperatures as low as ≈80 K. With decreasing grain size, an increasing magnitude of the hysteresis is also seen in the structural and optoelectronic properties when cooling to, and then upon heating from, 100 K. This work reveals the remarkable sensitivity of the optoelectronic, physical, and phase properties to the local environment of the perovskite structure, which will have large ramifications for phase and defect engineering in operating devices.
Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201901883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201901883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 28 Aug 2019 United Kingdom, China (People's Republic of), Netherlands, United KingdomPublisher:Wiley Funded by:UKRI | Control of spin and coher..., EC | HYPERION, UKRI | Strategic University Netw... +1 projectsUKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,EC| HYPERION ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE) ,UKRI| The Origin of Non-Radiative Losses in Metal Halide PerovskitesAuthors: Andaji‐Garmaroudi, Zahra; Abdi‐Jalebi, Mojtaba; Guo, Dengyang; Macpherson, Stuart; +12 AuthorsAndaji‐Garmaroudi, Zahra; Abdi‐Jalebi, Mojtaba; Guo, Dengyang; Macpherson, Stuart; Sadhanala, Aditya; Tennyson, Elizabeth M.; Ruggeri, Edoardo; Anaya, Miguel; Galkowski, Krzysztof; Shivanna, Ravichandran; Lohmann, Kilian; Frohna, Kyle; Mackowski, Sebastian; Savenije, Tom J.; Friend, Richard H.; Stranks, Samuel D.;pmid: 31489713
AbstractMixed‐halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution‐processed triple‐cation mixed‐halide (Cs0.06MA0.15FA0.79)Pb(Br0.4I0.6)3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar‐equivalent illumination. It is found that the illumination leads to localized surface sites of iodide‐rich perovskite intermixed with passivating PbI2 material. Time‐ and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide‐rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed‐halide mixed‐cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.
Advanced Materials arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201902374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 9 Powered bymore_vert Advanced Materials arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201902374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 13 Nov 2019 United KingdomPublisher:Wiley Funded by:UKRI | The Origin of Non-Radiati..., EC | HYPERION, EC | ConPLEDUKRI| The Origin of Non-Radiative Losses in Metal Halide Perovskites ,EC| HYPERION ,EC| ConPLEDCaterina Ducati; Felix Utama Kosasih; Anna Abfalterer; Samuel D. Stranks; Miguel Anaya; Sebastian Mackowski; Edoardo Ruggeri; Géraud Delport; Krzysztof Galkowski; Krzysztof Galkowski;pmid: 31709688
AbstractHalide perovskites are emerging as valid alternatives to conventional photovoltaic active materials owing to their low cost and high device performances. This material family also shows exceptional tunability of properties by varying chemical components, crystal structure, and dimensionality, providing a unique set of building blocks for new structures. Here, highly stable self‐assembled lead–tin perovskite heterostructures formed between low‐bandgap 3D and higher‐bandgap 2D components are demonstrated. A combination of surface‐sensitive X‐ray diffraction, spatially resolved photoluminescence, and electron microscopy measurements is used to reveal that microstructural heterojunctions form between high‐bandgap 2D surface crystallites and lower‐bandgap 3D domains. Furthermore, in situ X‐ray diffraction measurements are used during film formation to show that an ammonium thiocyanate additive delays formation of the 3D component and thus provides a tunable lever to substantially increase the fraction of 2D surface crystallites. These novel heterostructures will find use in bottom cells for stable tandem photovoltaics with a surface 2D layer passivating the 3D material, or in energy‐transfer devices requiring controlled energy flow from localized surface crystallites to the bulk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 13 Apr 2021 China (People's Republic of), Hong Kong, Singapore, China (People's Republic of), United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | The Origin of Non-Radiati..., EC | HYPERIONUKRI| The Origin of Non-Radiative Losses in Metal Halide Perovskites ,EC| HYPERIONGéraud Delport; Samuel D. Stranks; Krzysztof Galkowski; Krzysztof Galkowski; Alan Baldwin; Rosemonde Chahbazian; Kai Leng; Kian Ping Loh;Halide perovskites are versatile semiconductors with applications including photovoltaics and light-emitting devices, having modular optoelectronic properties realizable through composition and dimensionality tuning. Layered Ruddlesden-Popper perovskites are particularly interesting due to their unique 2D character and charge carrier dynamics. However, long-range energy transport through exciton diffusion in these materials is not understood or realized. Here, local time-resolved luminescence mapping techniques are employed to visualize exciton transport in exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. Two distinct transport regimes are uncovered, depending on the temperature range. Above 100 K, diffusion is mediated by thermally activated hopping processes between localized states. At lower temperatures, a nonuniform energy landscape emerges in which transport is dominated by downhill energy transfer to lower-energy states, leading to long-range transport over hundreds of nanometers. Efficient, long-range, and switchable downhill transfer offers exciting possibilities for controlled directional long-range transport in these 2D materials for new applications.
The Journal of Physi... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91060Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.1c00823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10397/91060Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Journal of Physical Chemistry LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.1c00823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2016Embargo end date: 01 Jan 2015 France, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | EUROMAGNET II, EC | HYPEREC| EUROMAGNET II ,EC| HYPERAuthors: Jacob Tse-Wei Wang; Robin J. Nicholas; Krzysztof Galkowski; Krzysztof Galkowski; +8 AuthorsJacob Tse-Wei Wang; Robin J. Nicholas; Krzysztof Galkowski; Krzysztof Galkowski; Anatolie A. Mitioglu; Paulina Plochocka; Thomas Stergiopoulos; Oliver Portugall; Samuel D. Stranks; Atsuhiko Miyata; Giles E. Eperon; Henry J. Snaith;The reduced effective mass (μ) and excitonic Rydberg (R*) are measured by magneto-optics for new perovskite semiconductors.
Energy & Environment... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: DataciteEnergy & Environmental ScienceArticle . 2016 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee03435c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 618 citations 618 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: DataciteEnergy & Environmental ScienceArticle . 2016 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee03435c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Embargo end date: 14 Aug 2017 United States, Italy, United Kingdom, France, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SOLAR BEYOND SILICON, UKRI | Membership of the UK to t...EC| SOLAR BEYOND SILICON ,UKRI| Membership of the UK to the European Magnetic Field LaboratoryAuthors: Robin J. Nicholas; Mojtaba Abdi-Jalebi; Paulina Plochocka; Alexander R. Pascoe; +17 AuthorsRobin J. Nicholas; Mojtaba Abdi-Jalebi; Paulina Plochocka; Alexander R. Pascoe; Nan Zhang; Atsuhiko Miyata; Yi-Bing Cheng; Krzysztof Galkowski; Krzysztof Galkowski; Roberto Brenes; Anita Ho-Baillie; Arman Mahboubi Soufiani; Samuel D. Stranks; Samuel D. Stranks; Oliver Portugall; Martin A. Green; Joanna Urban; Trevor Young; Zhuo Yang; Alessandro Surrente; Vladimir Bulovic;handle: 11573/1397871 , 1721.1/124562
The authors directly show that grain size and quality have a negligible impact on the excitonic characteristics of perovskite semiconductors.
DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2019License: CC BY NC SAFull-Text: http://dx.doi.org/10.1039/c7ee00685cData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1039/c7ee...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee00685c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DSpace@MIT (Massachu... arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2019License: CC BY NC SAFull-Text: http://dx.doi.org/10.1039/c7ee00685cData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1039/c7ee...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee00685c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2017Embargo end date: 01 Jan 2016 France, Moldova (Republic of), United Kingdom, Italy, Moldova (Republic of)Publisher:Royal Society of Chemistry (RSC) Funded by:EC | HYPER, EC | EUROMAGNET II, EC | MESOEC| HYPER ,EC| EUROMAGNET II ,EC| MESOGalkowski , K.; Mitioglu, A.A.; Surrente, A.; Yang, Z.; Maude, D.; Kossacki, P.; Eperon , G.; Wang, J.; Snaith, H.; Plochocka, P.; Płochocka, P.; Nicholas, R.;pmid: 28225143
handle: 11573/1397879
The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI$_{3}$, MAPbI$_{3-x}$Cl$_{x}$, FA (FormAmidinium)PbI$_{3}$ and FAPbBr$_{3}$ are having a tremendous impact on the field of photovoltaic cells due to their ease of deposition and efficiencies, but device performance can be significanly affected by inhomogeneities. Here we report a study of temperature dependent micro-photoluminescence which shows a strong spatial inhomogeneity related to the presence of microcrystalline grains, which can be both light and dark. In all of the tri-iodide based materials there is evidence that the tetragonal to orthorhombic phase transition observed around 160K does not occur uniformly across the sample with domain formation related to the underlying microcrystallite grains, some of which remain in the high temperature, tetragonal, phase even at very low temperatures. At low temperature the tetragonal domains can be significantly influenced by local defects in the layers. In FAPbBr$_{3}$ a more macroscopic domain structure is observed with large numbers of grains forming phase correlated regions. Main text + supplementary information
Nanoscale arrow_drop_down Instrumentul Bibliometric Național (IBN)Article . 2017Data sources: Instrumentul Bibliometric Național (IBN)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7nr00355b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nanoscale arrow_drop_down Instrumentul Bibliometric Național (IBN)Article . 2017Data sources: Instrumentul Bibliometric Național (IBN)https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7nr00355b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 08 Aug 2022 United KingdomPublisher:Wiley Funded by:EC | ConPLED, UKRI | Affordable Perovskite Sol..., UKRI | High-Efficiency Flexible ... +3 projectsEC| ConPLED ,UKRI| Affordable Perovskite Solar Irrigation Systems for Small-holder Farmers in Ethiopia (APSISSFE) ,UKRI| High-Efficiency Flexible and Scalable Halide-Perovskite Solar Modules ,UKRI| The Origin of Non-Radiative Losses in Metal Halide Perovskites ,EC| HYPERION ,UKRI| Cambridge-AMOLF Collaboration on Photonic and Optoelectronic Control of Thin-Film LEDs and Solar CellsRuggeri, Edoardo; Anaya, Miguel; Gałkowski, Krzysztof; Abfalterer, Anna; Chiang, Yu‐Hsien; Ji, Kangyu; Andaji‐Garmaroudi, Zahra; Stranks, Samuel D.;pmid: 35866352
Mixed‐halide mixed‐cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap‐tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable‐pitch synchrotron grazing‐incidence wide‐angle X‐ray scattering technique is used to track the surface and bulk structural changes in mixed‐halide mixed‐cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality‐ and depth‐dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out‐of‐plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de‐ and re‐mixing competitions and their impact on device longevity. These operando techniques allow real‐time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202202163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202202163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 21 Aug 2019 France, United KingdomPublisher:Wiley Funded by:EC | HYPERIONEC| HYPERIONSamuel D. Stranks; Sebastian Mackowski; Krzysztof Galkowski; Kangyu Ji; Camille Stavrakas; Edward P. Booker; Edoardo Ruggeri; Kyle Frohna; Robert Kudrawiec; Paulina Plochocka; Szymon J. Zelewski; Szymon J. Zelewski;AbstractGrain size in polycrystalline halide perovskite films is known to have an impact on the optoelectronic properties of the films, but its influence on their soft structural properties and phase transitions is unclear. Here, temperature‐dependent X‐ray diffraction, absorption, and macro‐ and micro‐photoluminescence measurements are used to investigate the tetragonal to orthorhombic phase transition in thin methylammonium lead iodide films with grain sizes ranging from the micrometer scale down to the tens of nanometer scale. It is shown that the phase transition nominally at ≈150 K is increasingly suppressed with decreasing grain size and, in the smallest grains, the first evidence of a phase transition is only seen at temperatures as low as ≈80 K. With decreasing grain size, an increasing magnitude of the hysteresis is also seen in the structural and optoelectronic properties when cooling to, and then upon heating from, 100 K. This work reveals the remarkable sensitivity of the optoelectronic, physical, and phase properties to the local environment of the perovskite structure, which will have large ramifications for phase and defect engineering in operating devices.
Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201901883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down Advanced Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.201901883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 28 Aug 2019 United Kingdom, China (People's Republic of), Netherlands, United KingdomPublisher:Wiley Funded by:UKRI | Control of spin and coher..., EC | HYPERION, UKRI | Strategic University Netw... +1 projectsUKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,EC| HYPERION ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE) ,UKRI| The Origin of Non-Radiative Losses in Metal Halide PerovskitesAuthors: Andaji‐Garmaroudi, Zahra; Abdi‐Jalebi, Mojtaba; Guo, Dengyang; Macpherson, Stuart; +12 AuthorsAndaji‐Garmaroudi, Zahra; Abdi‐Jalebi, Mojtaba; Guo, Dengyang; Macpherson, Stuart; Sadhanala, Aditya; Tennyson, Elizabeth M.; Ruggeri, Edoardo; Anaya, Miguel; Galkowski, Krzysztof; Shivanna, Ravichandran; Lohmann, Kilian; Frohna, Kyle; Mackowski, Sebastian; Savenije, Tom J.; Friend, Richard H.; Stranks, Samuel D.;pmid: 31489713
AbstractMixed‐halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution‐processed triple‐cation mixed‐halide (Cs0.06MA0.15FA0.79)Pb(Br0.4I0.6)3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar‐equivalent illumination. It is found that the illumination leads to localized surface sites of iodide‐rich perovskite intermixed with passivating PbI2 material. Time‐ and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide‐rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed‐halide mixed‐cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.
Advanced Materials arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201902374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 9 Powered bymore_vert Advanced Materials arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201902374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 13 Nov 2019 United KingdomPublisher:Wiley Funded by:UKRI | The Origin of Non-Radiati..., EC | HYPERION, EC | ConPLEDUKRI| The Origin of Non-Radiative Losses in Metal Halide Perovskites ,EC| HYPERION ,EC| ConPLEDCaterina Ducati; Felix Utama Kosasih; Anna Abfalterer; Samuel D. Stranks; Miguel Anaya; Sebastian Mackowski; Edoardo Ruggeri; Géraud Delport; Krzysztof Galkowski; Krzysztof Galkowski;pmid: 31709688
AbstractHalide perovskites are emerging as valid alternatives to conventional photovoltaic active materials owing to their low cost and high device performances. This material family also shows exceptional tunability of properties by varying chemical components, crystal structure, and dimensionality, providing a unique set of building blocks for new structures. Here, highly stable self‐assembled lead–tin perovskite heterostructures formed between low‐bandgap 3D and higher‐bandgap 2D components are demonstrated. A combination of surface‐sensitive X‐ray diffraction, spatially resolved photoluminescence, and electron microscopy measurements is used to reveal that microstructural heterojunctions form between high‐bandgap 2D surface crystallites and lower‐bandgap 3D domains. Furthermore, in situ X‐ray diffraction measurements are used during film formation to show that an ammonium thiocyanate additive delays formation of the 3D component and thus provides a tunable lever to substantially increase the fraction of 2D surface crystallites. These novel heterostructures will find use in bottom cells for stable tandem photovoltaics with a surface 2D layer passivating the 3D material, or in energy‐transfer devices requiring controlled energy flow from localized surface crystallites to the bulk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu