- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jun 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Shen, Qingchen; Parker, Richard; Zhu, Wenkai; Droguet, Benjamin; Zhang, Yun; Parton, Thomas; Shan, Xiwei; De Volder, Michael; Deng, Tao; Vignolini, Silvia; Li, Tian;doi: 10.17863/cam.85818
Electronic supporting Information is available from the publisher (Advanced Science). The data is provided within a structured set of folders compressed in zip, each correlating to a specific figure in the article. Spreadsheets are provided as ‘.xlsx’ or '.txt'; images as ‘.bmp’, ‘.jpeg’, ‘.tiff’ or ‘.png’. The data include photograph and the results of polarized optical microscopy, UV-VIS spectroscopy, FTIR spectroscopy, goniometer measurement, field test, and SEM. The methods part of the published paper has the detailed description of how the data were generated, collected, and processed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.85818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.85818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 22 Jun 2022 United KingdomPublisher:Wiley Funded by:UKRI | Sustainable Photonic Pigm..., UKRI | Roll-to-roll Self-assembl..., EC | SeSaMe +2 projectsUKRI| Sustainable Photonic Pigments Made of Bacteria ,UKRI| Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics) ,EC| SeSaMe ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional Nano ,EC| PlaMatSuZhu, Wenkai; Droguet, Benjamin; Shen, Qingchen; Zhang, Yun; Parton, Thomas G; Shan, Xiwei; Parker, Richard M; De Volder, Michael FL; Deng, Tao; Vignolini, Silvia; Li, Tian;pmid: 35843893
pmc: PMC9475522
AbstractDaytime radiative cooling (DRC) materials offer a sustainable approach to thermal management by exploiting net positive heat transfer to deep space. While such materials typically have a white or mirror‐like appearance to maximize solar reflection, extending the palette of available colors is required to promote their real‐world utilization. However, the incorporation of conventional absorption‐based colorants inevitably leads to solar heating, which counteracts any radiative cooling effect. In this work, efficient sub‐ambient DRC (Day: −4 °C, Night: −11 °C) from a vibrant, structurally colored film prepared from naturally derived cellulose nanocrystals (CNCs), is instead demonstrated. Arising from the underlying photonic nanostructure, the film selectively reflects visible light resulting in intense, fade‐resistant coloration, while maintaining a low solar absorption (≈3%). Additionally, a high emission within the mid‐infrared atmospheric window (>90%) allows for significant radiative heat loss. By coating such CNC films onto a highly scattering, porous ethylcellulose (EC) base layer, any sunlight that penetrates the CNC layer is backscattered by the EC layer below, achieving broadband solar reflection and vibrant structural color simultaneously. Finally, scalable manufacturing using a commercially relevant roll‐to‐roll process validates the potential to produce such colored radiative cooling materials at a large scale from a low‐cost and sustainable feedstock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202202061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 293visibility views 293 download downloads 258 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202202061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2022Embargo end date: 31 Aug 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Droguet, Benjamin;doi: 10.17863/cam.87956
To meet the increasing demand for sustainable products, one can look to nature to scout new functional materials. For instance, the most brilliant and striking colours in plants are obtained using cellulose nanofibrils organised in helicoidal architectures. Interestingly, similar helicoidal architectures with analogous optical response can be obtained in vitro by self-assembly of cellulose nanocrystals (CNCs). CNCs are rod-like colloids capable of arranging into a liquid crystalline phase above a critical concentration in suspension. So far, the process that governs the self-assembly of CNCs into photonic structures was studied only at small scale. This neglects the limitations and challenges posed by large-scale and continuous processes which are prevalent in industrial contexts. In this thesis, I demonstrate how the self-assembly of CNCs can be precisely controlled to produce meters-long films using a roll-to-roll (R2R) equipment. Starting with commercially available material, the preparation of CNC suspension was optimised for R2R deposition to produce films with vibrant photonic colour across the visible range. Particularly, I discuss how the suspension properties, the casting parameters and drying time relate to the optical properties of the produced films. To validate the use of such materials for pigment preparation, I develop a protocol to produce a series of coloured microparticles from R2R-cast CNC films. The optical properties of the CNC microparticles were then assessed in various environment and finally benchmarked against other commercial effect pigments and glitters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.87956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.87956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jun 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Shen, Qingchen; Parker, Richard; Zhu, Wenkai; Droguet, Benjamin; Zhang, Yun; Parton, Thomas; Shan, Xiwei; De Volder, Michael; Deng, Tao; Vignolini, Silvia; Li, Tian;doi: 10.17863/cam.85818
Electronic supporting Information is available from the publisher (Advanced Science). The data is provided within a structured set of folders compressed in zip, each correlating to a specific figure in the article. Spreadsheets are provided as ‘.xlsx’ or '.txt'; images as ‘.bmp’, ‘.jpeg’, ‘.tiff’ or ‘.png’. The data include photograph and the results of polarized optical microscopy, UV-VIS spectroscopy, FTIR spectroscopy, goniometer measurement, field test, and SEM. The methods part of the published paper has the detailed description of how the data were generated, collected, and processed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.85818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.85818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 22 Jun 2022 United KingdomPublisher:Wiley Funded by:UKRI | Sustainable Photonic Pigm..., UKRI | Roll-to-roll Self-assembl..., EC | SeSaMe +2 projectsUKRI| Sustainable Photonic Pigments Made of Bacteria ,UKRI| Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics) ,EC| SeSaMe ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional Nano ,EC| PlaMatSuZhu, Wenkai; Droguet, Benjamin; Shen, Qingchen; Zhang, Yun; Parton, Thomas G; Shan, Xiwei; Parker, Richard M; De Volder, Michael FL; Deng, Tao; Vignolini, Silvia; Li, Tian;pmid: 35843893
pmc: PMC9475522
AbstractDaytime radiative cooling (DRC) materials offer a sustainable approach to thermal management by exploiting net positive heat transfer to deep space. While such materials typically have a white or mirror‐like appearance to maximize solar reflection, extending the palette of available colors is required to promote their real‐world utilization. However, the incorporation of conventional absorption‐based colorants inevitably leads to solar heating, which counteracts any radiative cooling effect. In this work, efficient sub‐ambient DRC (Day: −4 °C, Night: −11 °C) from a vibrant, structurally colored film prepared from naturally derived cellulose nanocrystals (CNCs), is instead demonstrated. Arising from the underlying photonic nanostructure, the film selectively reflects visible light resulting in intense, fade‐resistant coloration, while maintaining a low solar absorption (≈3%). Additionally, a high emission within the mid‐infrared atmospheric window (>90%) allows for significant radiative heat loss. By coating such CNC films onto a highly scattering, porous ethylcellulose (EC) base layer, any sunlight that penetrates the CNC layer is backscattered by the EC layer below, achieving broadband solar reflection and vibrant structural color simultaneously. Finally, scalable manufacturing using a commercially relevant roll‐to‐roll process validates the potential to produce such colored radiative cooling materials at a large scale from a low‐cost and sustainable feedstock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202202061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 293visibility views 293 download downloads 258 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202202061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2022Embargo end date: 31 Aug 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Droguet, Benjamin;doi: 10.17863/cam.87956
To meet the increasing demand for sustainable products, one can look to nature to scout new functional materials. For instance, the most brilliant and striking colours in plants are obtained using cellulose nanofibrils organised in helicoidal architectures. Interestingly, similar helicoidal architectures with analogous optical response can be obtained in vitro by self-assembly of cellulose nanocrystals (CNCs). CNCs are rod-like colloids capable of arranging into a liquid crystalline phase above a critical concentration in suspension. So far, the process that governs the self-assembly of CNCs into photonic structures was studied only at small scale. This neglects the limitations and challenges posed by large-scale and continuous processes which are prevalent in industrial contexts. In this thesis, I demonstrate how the self-assembly of CNCs can be precisely controlled to produce meters-long films using a roll-to-roll (R2R) equipment. Starting with commercially available material, the preparation of CNC suspension was optimised for R2R deposition to produce films with vibrant photonic colour across the visible range. Particularly, I discuss how the suspension properties, the casting parameters and drying time relate to the optical properties of the produced films. To validate the use of such materials for pigment preparation, I develop a protocol to produce a series of coloured microparticles from R2R-cast CNC films. The optical properties of the CNC microparticles were then assessed in various environment and finally benchmarked against other commercial effect pigments and glitters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.87956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.87956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu