

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Structurally Colored Radiative Cooling Cellulosic Films

pmid: 35843893
pmc: PMC9475522
AbstractDaytime radiative cooling (DRC) materials offer a sustainable approach to thermal management by exploiting net positive heat transfer to deep space. While such materials typically have a white or mirror‐like appearance to maximize solar reflection, extending the palette of available colors is required to promote their real‐world utilization. However, the incorporation of conventional absorption‐based colorants inevitably leads to solar heating, which counteracts any radiative cooling effect. In this work, efficient sub‐ambient DRC (Day: −4 °C, Night: −11 °C) from a vibrant, structurally colored film prepared from naturally derived cellulose nanocrystals (CNCs), is instead demonstrated. Arising from the underlying photonic nanostructure, the film selectively reflects visible light resulting in intense, fade‐resistant coloration, while maintaining a low solar absorption (≈3%). Additionally, a high emission within the mid‐infrared atmospheric window (>90%) allows for significant radiative heat loss. By coating such CNC films onto a highly scattering, porous ethylcellulose (EC) base layer, any sunlight that penetrates the CNC layer is backscattered by the EC layer below, achieving broadband solar reflection and vibrant structural color simultaneously. Finally, scalable manufacturing using a commercially relevant roll‐to‐roll process validates the potential to produce such colored radiative cooling materials at a large scale from a low‐cost and sustainable feedstock.
- Purdue University West Lafayette United States
- University of Cambridge United Kingdom
- Shanghai Jiao Tong University China (People's Republic of)
- THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE United Kingdom
- Purdue University West Lafayette United States
Photons, Science, Q, structural color, sustainability, roll-to-roll deposition, cellulose, Phase Transition, Nanostructures, Cold Temperature, roll‐to‐roll deposition, sub‐ambient radiative cooling, Sunlight, sub-ambient radiative cooling
Photons, Science, Q, structural color, sustainability, roll-to-roll deposition, cellulose, Phase Transition, Nanostructures, Cold Temperature, roll‐to‐roll deposition, sub‐ambient radiative cooling, Sunlight, sub-ambient radiative cooling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 293 download downloads 258 - 293views258downloads
Data source Views Downloads Apollo 293 258


