- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mirosław Karczewski; Grzegorz Szamrej; Janusz Chojnowski;doi: 10.3390/en15134563
The problem of global warming and related climate change, as well as rising oil prices, is driving the implementation of ideas that not only reduce the consumption of liquid fuels, but also reduce greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties allowing the reduction of CO2 emissions during its combustion. Therefore, solutions are being implemented that allow natural gas to be supplied to means of transport, which are trucks of various categories and purposes. This article presents the results of tests of an engine from a used semi-truck, to which an innovative compressed natural gas (CNG) supply system was installed. This installation (both hardware and software), depending on the engine operating conditions, enables mass replacement by natural gas (up to 90%) of the basic fuel—diesel oil. During the tests, on the basis of the obtained results, the influence of the diesel fuel/CNG exchange ratio under various engine operating conditions on the concentration of toxic CO2, CO, NO, NO2, CH4, C2H6, NMHC, NH3 and exhaust smoke was assessed. The test results confirm that, compared to conventional fueling, the diesel/CNG-fueled engine allows for a significant reduction in CO2 concentration even in a car operated for several years with diesel fuel and with high mileage. The use of a non-factory installation significantly increased the concentration of methane CH4, nitrogen dioxide NO2 and carbon monoxide CO in the exhaust gas. It was found that the smoke content and the temperature of exhaust gases did not decrease with increasing ratio of fuel replacement. The concentration of CO, NOX, CH4 and NMHC was increased, while the concentration of CO2, C2H6, NH3 and the consumption of diesel fuel by the engine, decreased significantly. The innovation of the research is based on the use of a modern and unique engine gas fuel system control system where the original fuel supply system with unit pumps is able to reduce diesel oil consumption by up to 90%.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Polish Scientific Society of Combustion Engines Authors: Janusz Chojnowski;doi: 10.19206/ce-163320
Trucks are a key element that performs transport functions in many sectors of human activity. This makes ensuring their proper maintenance and performance critical. One of the solutions to this problem is the concept of a mobile automated testing and testing station. A mobile diagnostic and dynometric station based on a 6-foot container was built at the Military University of Technology in Warsaw. This bench is a self-contained unit that can be transported to various locations and carry out on-site testing and diagnostics of heavy trucks. The station is equipped with a fully open system and software that can accurately measure the performance and efficiency of the truck's engine and driveline and enforce specific automated diagnostic processes analogous to quality control tests during the production process. This information can then be used to make informed maintenance and repair decisions, helping to minimize downtime and increase overall vehicle life. The mobile diagnostic and dynamic station also provides a convenient and cost-effective alternative to traditional off-site testing methods, making it a valuable tool for transport companies and fleet managers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-163320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-163320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDAuthors: Mirosław Karczewski; Janusz Chojnowski; Grzegorz Szamrej;doi: 10.3390/en14165067
This article discusses the problems of exhaust gas emissions in the context of the possibility of their reduction through the use of fuels with hydrogen as an additive or hydrotreatment. These fuels, thanks to their properties, may be a suitable response to more and more demanding restrictions on exhaust emissions. The use of such fuels in reactivity controlled dual fuel engines (RCCI) is currently the most effective way of using them in internal combustion (IC) engines. Low-temperature combustion in this type of engine allows the use of all modern fuels intended for combustion engines with high thermal efficiency. Thermal efficiency higher than in classic engines allows for additional reduction of CO2 emissions. In this work, the research on this subject was compiled, and conclusions were drawn as to further possibilities of popularizing the use of these fuels in a wide spectrum of applications and the prospect of using them on a mass scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Janusz Chojnowski; Mirosław Karczewski;doi: 10.3390/en15134869
The article presents the justification for the necessity to use chassis dynamometers in the tuning process of dual-fuel trucks. The research system used and the research methodology are presented. The research results present the approach to solving problems related to setting the technical (physical) data of the tested vehicle on the dynamometer, selection of the vehicle engine operation range, the impact of the value of the forced load on the vehicle drive axle, selection of the dyno operation mode for the expected tasks and the impact of the correctness of the selection of the scope of the analysis of data on losses in the drive system. The article shows the above-mentioned influence on the test results on the dynamometer and on the tuning results. The article closes with a conclusion detailing prospects for developing the presented results.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4869/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4869/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Polish Scientific Society of Combustion Engines Authors: Janusz Chojnowski; Mirosław Karczewski; Grzegorz Aleksander Szamrej;doi: 10.19206/ce-176800
Displacing internal combustion engines (ICE) from the passenger car sector does not mean displacing it from all industries and specific applications. Thanks to the analysis of data on compression ignition (CI) engines used in the world, it is possible to prepare ready-made solutions for the most common engines in selected industries or for those whose greenhouse gas emissions will be the largest and most expensive for their owners in the coming years. The basic solution presented in this article gives the possibility of powering the engines with the most ecological currently known alternative motor fuels and using the already existing methane transmission infrastructure around the world. Their greatest advantage is their availability and low carbon content, which allows to minimize carbon dioxide emissions, both by burning hydrogen-enriched fuels and by increasing the efficiency of the engines modified by dual fuel supply system. Properly made external dual-fuel installation allows to improve the thermal efficiency of the CI engine. Work on this issue may help in the development of, for example, high-efficiency flex fuel power generators, which, as the current situation in Ukraine shows, are worthy. Thanks to the diversification of power sources for power generators, the countriesy is able to increase the reliability and security of energy supplies even in difficult conditions, such as armed conflict or natural disasters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-176800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-176800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Janusz Chojnowski; Tadeusz Dziubak;doi: 10.3390/en17051018
The research provides a comparative theoretical investigation of the operational characteristics of an electric semi-truck and vehicles powered by conventional combustion engines using diesel fuel, hydrotreated vegetable oil (HVO), and methane (including biomethane) in the dual fuel configuration. The Volvo tractor units that are offered for retail in 2024, namely the Volvo FH Electric, Volvo FH500 in dual fuel configuration, and Volvo FH500TC Diesel Euro VI, were chosen for comparison. The considerations encompassed include the road tractor’s mass, energy usage, power-to-weight ratio, dynamics, ability to recharge or refuel, payload restrictions, impact on logistics expenses, compliance with regulations on drivers’ working hours, and a report on carbon dioxide emissions. The study concludes by discussing and drawing conclusions on the competitiveness of different drive types in truck tractors, specifically in relation to identifying the most suitable areas of application. Synthetic conclusions demonstrate the high effectiveness of the electric drive in urban and suburban conditions. However, vehicles equipped with internal combustion engines using renewable fuels fill the gap in energy-intensive drives in long-distance transport.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mirosław Karczewski; Grzegorz Szamrej; Janusz Chojnowski;doi: 10.3390/en15134563
The problem of global warming and related climate change, as well as rising oil prices, is driving the implementation of ideas that not only reduce the consumption of liquid fuels, but also reduce greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties allowing the reduction of CO2 emissions during its combustion. Therefore, solutions are being implemented that allow natural gas to be supplied to means of transport, which are trucks of various categories and purposes. This article presents the results of tests of an engine from a used semi-truck, to which an innovative compressed natural gas (CNG) supply system was installed. This installation (both hardware and software), depending on the engine operating conditions, enables mass replacement by natural gas (up to 90%) of the basic fuel—diesel oil. During the tests, on the basis of the obtained results, the influence of the diesel fuel/CNG exchange ratio under various engine operating conditions on the concentration of toxic CO2, CO, NO, NO2, CH4, C2H6, NMHC, NH3 and exhaust smoke was assessed. The test results confirm that, compared to conventional fueling, the diesel/CNG-fueled engine allows for a significant reduction in CO2 concentration even in a car operated for several years with diesel fuel and with high mileage. The use of a non-factory installation significantly increased the concentration of methane CH4, nitrogen dioxide NO2 and carbon monoxide CO in the exhaust gas. It was found that the smoke content and the temperature of exhaust gases did not decrease with increasing ratio of fuel replacement. The concentration of CO, NOX, CH4 and NMHC was increased, while the concentration of CO2, C2H6, NH3 and the consumption of diesel fuel by the engine, decreased significantly. The innovation of the research is based on the use of a modern and unique engine gas fuel system control system where the original fuel supply system with unit pumps is able to reduce diesel oil consumption by up to 90%.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4563/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Polish Scientific Society of Combustion Engines Authors: Janusz Chojnowski;doi: 10.19206/ce-163320
Trucks are a key element that performs transport functions in many sectors of human activity. This makes ensuring their proper maintenance and performance critical. One of the solutions to this problem is the concept of a mobile automated testing and testing station. A mobile diagnostic and dynometric station based on a 6-foot container was built at the Military University of Technology in Warsaw. This bench is a self-contained unit that can be transported to various locations and carry out on-site testing and diagnostics of heavy trucks. The station is equipped with a fully open system and software that can accurately measure the performance and efficiency of the truck's engine and driveline and enforce specific automated diagnostic processes analogous to quality control tests during the production process. This information can then be used to make informed maintenance and repair decisions, helping to minimize downtime and increase overall vehicle life. The mobile diagnostic and dynamic station also provides a convenient and cost-effective alternative to traditional off-site testing methods, making it a valuable tool for transport companies and fleet managers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-163320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-163320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDAuthors: Mirosław Karczewski; Janusz Chojnowski; Grzegorz Szamrej;doi: 10.3390/en14165067
This article discusses the problems of exhaust gas emissions in the context of the possibility of their reduction through the use of fuels with hydrogen as an additive or hydrotreatment. These fuels, thanks to their properties, may be a suitable response to more and more demanding restrictions on exhaust emissions. The use of such fuels in reactivity controlled dual fuel engines (RCCI) is currently the most effective way of using them in internal combustion (IC) engines. Low-temperature combustion in this type of engine allows the use of all modern fuels intended for combustion engines with high thermal efficiency. Thermal efficiency higher than in classic engines allows for additional reduction of CO2 emissions. In this work, the research on this subject was compiled, and conclusions were drawn as to further possibilities of popularizing the use of these fuels in a wide spectrum of applications and the prospect of using them on a mass scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Janusz Chojnowski; Mirosław Karczewski;doi: 10.3390/en15134869
The article presents the justification for the necessity to use chassis dynamometers in the tuning process of dual-fuel trucks. The research system used and the research methodology are presented. The research results present the approach to solving problems related to setting the technical (physical) data of the tested vehicle on the dynamometer, selection of the vehicle engine operation range, the impact of the value of the forced load on the vehicle drive axle, selection of the dyno operation mode for the expected tasks and the impact of the correctness of the selection of the scope of the analysis of data on losses in the drive system. The article shows the above-mentioned influence on the test results on the dynamometer and on the tuning results. The article closes with a conclusion detailing prospects for developing the presented results.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4869/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/13/4869/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15134869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Polish Scientific Society of Combustion Engines Authors: Janusz Chojnowski; Mirosław Karczewski; Grzegorz Aleksander Szamrej;doi: 10.19206/ce-176800
Displacing internal combustion engines (ICE) from the passenger car sector does not mean displacing it from all industries and specific applications. Thanks to the analysis of data on compression ignition (CI) engines used in the world, it is possible to prepare ready-made solutions for the most common engines in selected industries or for those whose greenhouse gas emissions will be the largest and most expensive for their owners in the coming years. The basic solution presented in this article gives the possibility of powering the engines with the most ecological currently known alternative motor fuels and using the already existing methane transmission infrastructure around the world. Their greatest advantage is their availability and low carbon content, which allows to minimize carbon dioxide emissions, both by burning hydrogen-enriched fuels and by increasing the efficiency of the engines modified by dual fuel supply system. Properly made external dual-fuel installation allows to improve the thermal efficiency of the CI engine. Work on this issue may help in the development of, for example, high-efficiency flex fuel power generators, which, as the current situation in Ukraine shows, are worthy. Thanks to the diversification of power sources for power generators, the countriesy is able to increase the reliability and security of energy supplies even in difficult conditions, such as armed conflict or natural disasters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-176800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-176800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Janusz Chojnowski; Tadeusz Dziubak;doi: 10.3390/en17051018
The research provides a comparative theoretical investigation of the operational characteristics of an electric semi-truck and vehicles powered by conventional combustion engines using diesel fuel, hydrotreated vegetable oil (HVO), and methane (including biomethane) in the dual fuel configuration. The Volvo tractor units that are offered for retail in 2024, namely the Volvo FH Electric, Volvo FH500 in dual fuel configuration, and Volvo FH500TC Diesel Euro VI, were chosen for comparison. The considerations encompassed include the road tractor’s mass, energy usage, power-to-weight ratio, dynamics, ability to recharge or refuel, payload restrictions, impact on logistics expenses, compliance with regulations on drivers’ working hours, and a report on carbon dioxide emissions. The study concludes by discussing and drawing conclusions on the competitiveness of different drive types in truck tractors, specifically in relation to identifying the most suitable areas of application. Synthetic conclusions demonstrate the high effectiveness of the electric drive in urban and suburban conditions. However, vehicles equipped with internal combustion engines using renewable fuels fill the gap in energy-intensive drives in long-distance transport.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu