- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Springer Science and Business Media LLC Timing of reproduction has major fitness consequences, which can only be understood when the phenology of the food for the offspring is quantified. For insectivorous birds, like great tits (Parus major), synchronisation of their offspring needs and abundance of caterpillars is the main selection pressure. We measured caterpillar biomass over a 20-year period and showed that the annual peak date is correlated with temperatures from 8 March to 17 May. Laying dates also correlate with temperatures, but over an earlier period (16 March-20 April). However, as we would predict from a reliable cue used by birds to time their reproduction, also the food peak correlates with these temperatures. Moreover, the slopes of the phenology of the birds and caterpillar biomass, when regressed against the temperatures in this earlier period, do not differ. The major difference is that due to climate change, the relationship between the timing of the food peak and the temperatures over the 16 March-20 April period is changing, while this is not so for great tit laying dates. As a consequence, the synchrony between offspring needs and the caterpillar biomass has been disrupted in the recent warm decades. This may have severe consequences as we show that both the number of fledglings as well as their fledging weight is affected by this synchrony. We use the descriptive models for both the caterpillar biomass peak as for the great tit laying dates to predict shifts in caterpillar and bird phenology 2005-2100, using an IPCC climate scenario. The birds will start breeding earlier and this advancement is predicted to be at the same rate as the advancement of the food peak, and hence they will not reduce the amount of the current mistiming of about 10 days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu531 citations 531 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Springer Science and Business Media LLC Timing of reproduction has major fitness consequences, which can only be understood when the phenology of the food for the offspring is quantified. For insectivorous birds, like great tits (Parus major), synchronisation of their offspring needs and abundance of caterpillars is the main selection pressure. We measured caterpillar biomass over a 20-year period and showed that the annual peak date is correlated with temperatures from 8 March to 17 May. Laying dates also correlate with temperatures, but over an earlier period (16 March-20 April). However, as we would predict from a reliable cue used by birds to time their reproduction, also the food peak correlates with these temperatures. Moreover, the slopes of the phenology of the birds and caterpillar biomass, when regressed against the temperatures in this earlier period, do not differ. The major difference is that due to climate change, the relationship between the timing of the food peak and the temperatures over the 16 March-20 April period is changing, while this is not so for great tit laying dates. As a consequence, the synchrony between offspring needs and the caterpillar biomass has been disrupted in the recent warm decades. This may have severe consequences as we show that both the number of fledglings as well as their fledging weight is affected by this synchrony. We use the descriptive models for both the caterpillar biomass peak as for the great tit laying dates to predict shifts in caterpillar and bird phenology 2005-2100, using an IPCC climate scenario. The birds will start breeding earlier and this advancement is predicted to be at the same rate as the advancement of the food peak, and hence they will not reduce the amount of the current mistiming of about 10 days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu531 citations 531 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, France, Netherlands, United KingdomPublisher:Elsevier BV Caro, Samuel; Schaper, Sonja; Dawson, Alistair; Sharp, Peter; Gienapp, Phillip; Visser, Marcel;Many bird species have advanced their seasonal timing in response to global warming, but we still know little about the causal effect of temperature. We carried out experiments in climate-controlled aviaries to investigate how temperature affects luteinizing hormone, prolactin, gonadal development, timing of egg laying and onset of moult in male and female great tits. We used both natural and artificial temperature patterns to identify the temperature characteristics that matter for birds. Our results show that temperature has a direct, causal effect on onset of egg-laying, and in particular, that it is the pattern of increase rather than the absolute temperature that birds use. Surprisingly, the pre-breeding increases in plasma LH, prolactin and in gonadal size are not affected by increasing temperature, nor do they correlate with the onset of laying. This suggests that the decision to start breeding and its regulatory mechanisms are fine-tuned by different factors. We also found similarities between siblings in the timing of both the onset of reproduction and associated changes in plasma LH, prolactin and gonadal development. In conclusion, while temperature affects the timing of egg laying, the neuroendocrine system does not seem to be regulated by moderate temperature changes. This lack of responsiveness may restrain the advance in the timing of breeding in response to climate change. But as there is heritable genetic variation on which natural selection can act, microevolution can take place, and may represent the only way to adapt to a warming world.
NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, France, Netherlands, United KingdomPublisher:Elsevier BV Caro, Samuel; Schaper, Sonja; Dawson, Alistair; Sharp, Peter; Gienapp, Phillip; Visser, Marcel;Many bird species have advanced their seasonal timing in response to global warming, but we still know little about the causal effect of temperature. We carried out experiments in climate-controlled aviaries to investigate how temperature affects luteinizing hormone, prolactin, gonadal development, timing of egg laying and onset of moult in male and female great tits. We used both natural and artificial temperature patterns to identify the temperature characteristics that matter for birds. Our results show that temperature has a direct, causal effect on onset of egg-laying, and in particular, that it is the pattern of increase rather than the absolute temperature that birds use. Surprisingly, the pre-breeding increases in plasma LH, prolactin and in gonadal size are not affected by increasing temperature, nor do they correlate with the onset of laying. This suggests that the decision to start breeding and its regulatory mechanisms are fine-tuned by different factors. We also found similarities between siblings in the timing of both the onset of reproduction and associated changes in plasma LH, prolactin and gonadal development. In conclusion, while temperature affects the timing of egg laying, the neuroendocrine system does not seem to be regulated by moderate temperature changes. This lack of responsiveness may restrain the advance in the timing of breeding in response to climate change. But as there is heritable genetic variation on which natural selection can act, microevolution can take place, and may represent the only way to adapt to a warming world.
NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, United KingdomPublisher:Oxford University Press (OUP) Authors: Schaper, S.V.; Gienapp, P.; Dawson, A.; Visser, M.E.;AbstractMany organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.
NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, United KingdomPublisher:Oxford University Press (OUP) Authors: Schaper, S.V.; Gienapp, P.; Dawson, A.; Visser, M.E.;AbstractMany organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.
NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:The Royal Society Authors: Barbara M. Tomotani; Phillip Gienapp; Domien G. M. Beersma; Marcel E. Visser;pmid: 27655765
pmc: PMC5046899
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:The Royal Society Authors: Barbara M. Tomotani; Phillip Gienapp; Domien G. M. Beersma; Marcel E. Visser;pmid: 27655765
pmc: PMC5046899
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Oxford University Press (OUP) Authors: Juha Merilä; Phillip Gienapp;AbstractSpatial and temporal phenotypic differentiation in mean body size is of commonplace occurrence, but the underlying causes remain often unclear: both genetic differentiation in response to selection (or drift) and environmentally induced plasticity can create similar phenotypic patterns. Studying changes in body mass in Siberian jays (Perisoreus infaustus) over three decades, we discovered that mean body mass declined drastically (ca. 10%) over the first two decades, but increased markedly thereafter back to almost the initial level. Quantitative genetic analyses revealed that although body mass was heritable (h2 = 0.46), the pronounced temporal decrease in body mass was mainly a product of phenotypic plasticity. However, a concomitant and statistically significant decrease in predicted breeding values suggests a genetic component to this change. The subsequent increase in mean body mass was indicated to be entirely due to plasticity. Selection on body mass was estimated to be too weak to fully account for the observed genetic decline in body mass, but bias in selection differential estimates due to environmental covariance between body mass and fitness is possible. Hence, the observed body mass changes appear to be driven mainly by phenotypic plasticity. Although we were not able to identify the ecological driver of the observed plastic changes, the results highlight the utility of quantitative genetic approaches in disentangling genetic and phenotypic changes in natural populations.
Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Oxford University Press (OUP) Authors: Juha Merilä; Phillip Gienapp;AbstractSpatial and temporal phenotypic differentiation in mean body size is of commonplace occurrence, but the underlying causes remain often unclear: both genetic differentiation in response to selection (or drift) and environmentally induced plasticity can create similar phenotypic patterns. Studying changes in body mass in Siberian jays (Perisoreus infaustus) over three decades, we discovered that mean body mass declined drastically (ca. 10%) over the first two decades, but increased markedly thereafter back to almost the initial level. Quantitative genetic analyses revealed that although body mass was heritable (h2 = 0.46), the pronounced temporal decrease in body mass was mainly a product of phenotypic plasticity. However, a concomitant and statistically significant decrease in predicted breeding values suggests a genetic component to this change. The subsequent increase in mean body mass was indicated to be entirely due to plasticity. Selection on body mass was estimated to be too weak to fully account for the observed genetic decline in body mass, but bias in selection differential estimates due to environmental covariance between body mass and fitness is possible. Hence, the observed body mass changes appear to be driven mainly by phenotypic plasticity. Although we were not able to identify the ecological driver of the observed plastic changes, the results highlight the utility of quantitative genetic approaches in disentangling genetic and phenotypic changes in natural populations.
Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, NorwayPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | E-RESPONSEEC| E-RESPONSEMelanie Lindner; Jip JC Ramakers; Irene Verhagen; Barbara M Tomotani; A Christa Mateman; Phillip Gienapp; Marcel E Visser;pmid: 37285433
pmc: PMC10246905
Global warming has shifted phenological traits in many species, but whether species are able to track further increasing temperatures depends on the fitness consequences of additional shifts in phenological traits. To test this, we measured phenology and fitness of great tits ( Parus major ) with genotypes for extremely early and late egg lay dates, obtained from a genomic selection experiment. Females with early genotypes advanced lay dates relative to females with late genotypes, but not relative to nonselected females. Females with early and late genotypes did not differ in the number of fledglings produced, in line with the weak effect of lay date on the number of fledglings produced by nonselected females in the years of the experiment. Our study is the first application of genomic selection in the wild and led to an asymmetric phenotypic response that indicates the presence of constraints toward early, but not late, lay dates.
Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, NorwayPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | E-RESPONSEEC| E-RESPONSEMelanie Lindner; Jip JC Ramakers; Irene Verhagen; Barbara M Tomotani; A Christa Mateman; Phillip Gienapp; Marcel E Visser;pmid: 37285433
pmc: PMC10246905
Global warming has shifted phenological traits in many species, but whether species are able to track further increasing temperatures depends on the fitness consequences of additional shifts in phenological traits. To test this, we measured phenology and fitness of great tits ( Parus major ) with genotypes for extremely early and late egg lay dates, obtained from a genomic selection experiment. Females with early genotypes advanced lay dates relative to females with late genotypes, but not relative to nonselected females. Females with early and late genotypes did not differ in the number of fledglings produced, in line with the weak effect of lay date on the number of fledglings produced by nonselected females in the years of the experiment. Our study is the first application of genomic selection in the wild and led to an asymmetric phenotypic response that indicates the presence of constraints toward early, but not late, lay dates.
Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FinlandPublisher:Public Library of Science (PLoS) Authors: Gienapp, Phillip; Bregnballe, Thomas;In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark). Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.
PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FinlandPublisher:Public Library of Science (PLoS) Authors: Gienapp, Phillip; Bregnballe, Thomas;In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark). Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.
PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Belgium, United Kingdom, Australia, Spain, United KingdomPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Susan E. Hartley; T. Hefin Jones; M. Francesca Cotrufo; Pete Smith; William W. L. Cheung; Rowan F. Sage; Josep Peñuelas; Miko U. F. Kirschbaum; Maria Byrne; David J. Suggett; Rhea Bruno; Yiqi Luo; Steve Long; Steve Long; Ivan A. Janssens; Sharon A. Robinson; Stephen J. Thackeray; Danielle A. Way; Kazuhiko Kobayashi; Carl J. Bernacchi; Carl J. Bernacchi; Phillip Gienapp;The IPCC (Intergovernmental Panel on Climate Change) "Special Report on Global Warming of 1.5°C" presented the ambitious target of needing to achieve zero net emissions by 2050 in order to meet the goals of the Paris Agreement (IPCC, 2018). This report led some governments and jurisdictions to declare a climate emergency (Climate Emergency Declaration, 2019) and prompted the rise of movements of activism and civil disobedience such as the School Strike for the Climate and Extinction Rebellion. The reach of these civil actions extends beyond those directly involved, potentially increasing wider public awareness of climate change. Here, we examine trends in indicators of this wider public awareness and engagement and compare these with major global movements of civil disobedience focussed on climate, the release of substantive climate reports, and global governmental gatherings on climate change. We show that these global movements may be increasing public awareness of, and stimulating public engagement with, issues of climate change. .
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Belgium, United Kingdom, Australia, Spain, United KingdomPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Susan E. Hartley; T. Hefin Jones; M. Francesca Cotrufo; Pete Smith; William W. L. Cheung; Rowan F. Sage; Josep Peñuelas; Miko U. F. Kirschbaum; Maria Byrne; David J. Suggett; Rhea Bruno; Yiqi Luo; Steve Long; Steve Long; Ivan A. Janssens; Sharon A. Robinson; Stephen J. Thackeray; Danielle A. Way; Kazuhiko Kobayashi; Carl J. Bernacchi; Carl J. Bernacchi; Phillip Gienapp;The IPCC (Intergovernmental Panel on Climate Change) "Special Report on Global Warming of 1.5°C" presented the ambitious target of needing to achieve zero net emissions by 2050 in order to meet the goals of the Paris Agreement (IPCC, 2018). This report led some governments and jurisdictions to declare a climate emergency (Climate Emergency Declaration, 2019) and prompted the rise of movements of activism and civil disobedience such as the School Strike for the Climate and Extinction Rebellion. The reach of these civil actions extends beyond those directly involved, potentially increasing wider public awareness of climate change. Here, we examine trends in indicators of this wider public awareness and engagement and compare these with major global movements of civil disobedience focussed on climate, the release of substantive climate reports, and global governmental gatherings on climate change. We show that these global movements may be increasing public awareness of, and stimulating public engagement with, issues of climate change. .
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:The Royal Society Publicly fundedAuthors: Marcel E. Visser; Thomas E. Reed; Phillip Gienapp;pmid: 25165771
pmc: PMC4173688
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:The Royal Society Publicly fundedAuthors: Marcel E. Visser; Thomas E. Reed; Phillip Gienapp;pmid: 25165771
pmc: PMC4173688
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:Inter-Research Science Center Authors: Gienapp, P; Leimu, R; Merilae, J;doi: 10.3354/cr00712
While the evidence for advancement of spring phenology of animals and plants in response to recent climate change is overwhelming and undisputed, formal meta-analyses of avian migratory phenologies in response to climate change have not been conducted. Likewise, attempts to evaluate the relative roles of phenotypic plasticity versus evolutionary responses of observed advances in arrival times have been few. We conducted a meta-analysis of published data on timing of avian spring migration, with particular emphasis on evaluating whether the observed patterns are consistent with evolutionary explanations. In addition, we compared the observed rates of advance- ment with the theoretically expected rates of 'sustainable evolution'. The meta-analysis confirmed a general advancement of avian migration time and that this advancement is correlated with climatic parameters. However, large-scale geographical patterns and relationships with age at first reproduc- tion—a proxy of generation time—were less clear. The average rate of advancement expressed in haldanes (h = 0.07) was within theoretically predicted limits of 'sustainable evolution'. All in all, while the results are in clear agreement with the assertion that birds are advancing their migratory schedules, they do not unambiguously support or refute the possibility that the observed responses would be genetic, rather than examples of phenotypic plasticity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 145 citations 145 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:Inter-Research Science Center Authors: Gienapp, P; Leimu, R; Merilae, J;doi: 10.3354/cr00712
While the evidence for advancement of spring phenology of animals and plants in response to recent climate change is overwhelming and undisputed, formal meta-analyses of avian migratory phenologies in response to climate change have not been conducted. Likewise, attempts to evaluate the relative roles of phenotypic plasticity versus evolutionary responses of observed advances in arrival times have been few. We conducted a meta-analysis of published data on timing of avian spring migration, with particular emphasis on evaluating whether the observed patterns are consistent with evolutionary explanations. In addition, we compared the observed rates of advance- ment with the theoretically expected rates of 'sustainable evolution'. The meta-analysis confirmed a general advancement of avian migration time and that this advancement is correlated with climatic parameters. However, large-scale geographical patterns and relationships with age at first reproduc- tion—a proxy of generation time—were less clear. The average rate of advancement expressed in haldanes (h = 0.07) was within theoretically predicted limits of 'sustainable evolution'. All in all, while the results are in clear agreement with the assertion that birds are advancing their migratory schedules, they do not unambiguously support or refute the possibility that the observed responses would be genetic, rather than examples of phenotypic plasticity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 145 citations 145 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Springer Science and Business Media LLC Timing of reproduction has major fitness consequences, which can only be understood when the phenology of the food for the offspring is quantified. For insectivorous birds, like great tits (Parus major), synchronisation of their offspring needs and abundance of caterpillars is the main selection pressure. We measured caterpillar biomass over a 20-year period and showed that the annual peak date is correlated with temperatures from 8 March to 17 May. Laying dates also correlate with temperatures, but over an earlier period (16 March-20 April). However, as we would predict from a reliable cue used by birds to time their reproduction, also the food peak correlates with these temperatures. Moreover, the slopes of the phenology of the birds and caterpillar biomass, when regressed against the temperatures in this earlier period, do not differ. The major difference is that due to climate change, the relationship between the timing of the food peak and the temperatures over the 16 March-20 April period is changing, while this is not so for great tit laying dates. As a consequence, the synchrony between offspring needs and the caterpillar biomass has been disrupted in the recent warm decades. This may have severe consequences as we show that both the number of fledglings as well as their fledging weight is affected by this synchrony. We use the descriptive models for both the caterpillar biomass peak as for the great tit laying dates to predict shifts in caterpillar and bird phenology 2005-2100, using an IPCC climate scenario. The birds will start breeding earlier and this advancement is predicted to be at the same rate as the advancement of the food peak, and hence they will not reduce the amount of the current mistiming of about 10 days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu531 citations 531 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Springer Science and Business Media LLC Timing of reproduction has major fitness consequences, which can only be understood when the phenology of the food for the offspring is quantified. For insectivorous birds, like great tits (Parus major), synchronisation of their offspring needs and abundance of caterpillars is the main selection pressure. We measured caterpillar biomass over a 20-year period and showed that the annual peak date is correlated with temperatures from 8 March to 17 May. Laying dates also correlate with temperatures, but over an earlier period (16 March-20 April). However, as we would predict from a reliable cue used by birds to time their reproduction, also the food peak correlates with these temperatures. Moreover, the slopes of the phenology of the birds and caterpillar biomass, when regressed against the temperatures in this earlier period, do not differ. The major difference is that due to climate change, the relationship between the timing of the food peak and the temperatures over the 16 March-20 April period is changing, while this is not so for great tit laying dates. As a consequence, the synchrony between offspring needs and the caterpillar biomass has been disrupted in the recent warm decades. This may have severe consequences as we show that both the number of fledglings as well as their fledging weight is affected by this synchrony. We use the descriptive models for both the caterpillar biomass peak as for the great tit laying dates to predict shifts in caterpillar and bird phenology 2005-2100, using an IPCC climate scenario. The birds will start breeding earlier and this advancement is predicted to be at the same rate as the advancement of the food peak, and hence they will not reduce the amount of the current mistiming of about 10 days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu531 citations 531 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-005-0299-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, France, Netherlands, United KingdomPublisher:Elsevier BV Caro, Samuel; Schaper, Sonja; Dawson, Alistair; Sharp, Peter; Gienapp, Phillip; Visser, Marcel;Many bird species have advanced their seasonal timing in response to global warming, but we still know little about the causal effect of temperature. We carried out experiments in climate-controlled aviaries to investigate how temperature affects luteinizing hormone, prolactin, gonadal development, timing of egg laying and onset of moult in male and female great tits. We used both natural and artificial temperature patterns to identify the temperature characteristics that matter for birds. Our results show that temperature has a direct, causal effect on onset of egg-laying, and in particular, that it is the pattern of increase rather than the absolute temperature that birds use. Surprisingly, the pre-breeding increases in plasma LH, prolactin and in gonadal size are not affected by increasing temperature, nor do they correlate with the onset of laying. This suggests that the decision to start breeding and its regulatory mechanisms are fine-tuned by different factors. We also found similarities between siblings in the timing of both the onset of reproduction and associated changes in plasma LH, prolactin and gonadal development. In conclusion, while temperature affects the timing of egg laying, the neuroendocrine system does not seem to be regulated by moderate temperature changes. This lack of responsiveness may restrain the advance in the timing of breeding in response to climate change. But as there is heritable genetic variation on which natural selection can act, microevolution can take place, and may represent the only way to adapt to a warming world.
NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, France, Netherlands, United KingdomPublisher:Elsevier BV Caro, Samuel; Schaper, Sonja; Dawson, Alistair; Sharp, Peter; Gienapp, Phillip; Visser, Marcel;Many bird species have advanced their seasonal timing in response to global warming, but we still know little about the causal effect of temperature. We carried out experiments in climate-controlled aviaries to investigate how temperature affects luteinizing hormone, prolactin, gonadal development, timing of egg laying and onset of moult in male and female great tits. We used both natural and artificial temperature patterns to identify the temperature characteristics that matter for birds. Our results show that temperature has a direct, causal effect on onset of egg-laying, and in particular, that it is the pattern of increase rather than the absolute temperature that birds use. Surprisingly, the pre-breeding increases in plasma LH, prolactin and in gonadal size are not affected by increasing temperature, nor do they correlate with the onset of laying. This suggests that the decision to start breeding and its regulatory mechanisms are fine-tuned by different factors. We also found similarities between siblings in the timing of both the onset of reproduction and associated changes in plasma LH, prolactin and gonadal development. In conclusion, while temperature affects the timing of egg laying, the neuroendocrine system does not seem to be regulated by moderate temperature changes. This lack of responsiveness may restrain the advance in the timing of breeding in response to climate change. But as there is heritable genetic variation on which natural selection can act, microevolution can take place, and may represent the only way to adapt to a warming world.
NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down General and Comparative EndocrinologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGeneral and Comparative EndocrinologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ygcen.2013.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, United KingdomPublisher:Oxford University Press (OUP) Authors: Schaper, S.V.; Gienapp, P.; Dawson, A.; Visser, M.E.;AbstractMany organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.
NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, United KingdomPublisher:Oxford University Press (OUP) Authors: Schaper, S.V.; Gienapp, P.; Dawson, A.; Visser, M.E.;AbstractMany organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.
NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Journal of Evolutionary BiologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2013License: © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary BiologyData sources: KNAW PureNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:The Royal Society Authors: Barbara M. Tomotani; Phillip Gienapp; Domien G. M. Beersma; Marcel E. Visser;pmid: 27655765
pmc: PMC5046899
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:The Royal Society Authors: Barbara M. Tomotani; Phillip Gienapp; Domien G. M. Beersma; Marcel E. Visser;pmid: 27655765
pmc: PMC5046899
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016License: taverneData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Oxford University Press (OUP) Authors: Juha Merilä; Phillip Gienapp;AbstractSpatial and temporal phenotypic differentiation in mean body size is of commonplace occurrence, but the underlying causes remain often unclear: both genetic differentiation in response to selection (or drift) and environmentally induced plasticity can create similar phenotypic patterns. Studying changes in body mass in Siberian jays (Perisoreus infaustus) over three decades, we discovered that mean body mass declined drastically (ca. 10%) over the first two decades, but increased markedly thereafter back to almost the initial level. Quantitative genetic analyses revealed that although body mass was heritable (h2 = 0.46), the pronounced temporal decrease in body mass was mainly a product of phenotypic plasticity. However, a concomitant and statistically significant decrease in predicted breeding values suggests a genetic component to this change. The subsequent increase in mean body mass was indicated to be entirely due to plasticity. Selection on body mass was estimated to be too weak to fully account for the observed genetic decline in body mass, but bias in selection differential estimates due to environmental covariance between body mass and fitness is possible. Hence, the observed body mass changes appear to be driven mainly by phenotypic plasticity. Although we were not able to identify the ecological driver of the observed plastic changes, the results highlight the utility of quantitative genetic approaches in disentangling genetic and phenotypic changes in natural populations.
Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Oxford University Press (OUP) Authors: Juha Merilä; Phillip Gienapp;AbstractSpatial and temporal phenotypic differentiation in mean body size is of commonplace occurrence, but the underlying causes remain often unclear: both genetic differentiation in response to selection (or drift) and environmentally induced plasticity can create similar phenotypic patterns. Studying changes in body mass in Siberian jays (Perisoreus infaustus) over three decades, we discovered that mean body mass declined drastically (ca. 10%) over the first two decades, but increased markedly thereafter back to almost the initial level. Quantitative genetic analyses revealed that although body mass was heritable (h2 = 0.46), the pronounced temporal decrease in body mass was mainly a product of phenotypic plasticity. However, a concomitant and statistically significant decrease in predicted breeding values suggests a genetic component to this change. The subsequent increase in mean body mass was indicated to be entirely due to plasticity. Selection on body mass was estimated to be too weak to fully account for the observed genetic decline in body mass, but bias in selection differential estimates due to environmental covariance between body mass and fitness is possible. Hence, the observed body mass changes appear to be driven mainly by phenotypic plasticity. Although we were not able to identify the ecological driver of the observed plastic changes, the results highlight the utility of quantitative genetic approaches in disentangling genetic and phenotypic changes in natural populations.
Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Evolution... arrow_drop_down Journal of Evolutionary BiologyArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Evolutionary BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Evolutionary BiologyArticle . 2014License: © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary BiologyData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.12438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, NorwayPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | E-RESPONSEEC| E-RESPONSEMelanie Lindner; Jip JC Ramakers; Irene Verhagen; Barbara M Tomotani; A Christa Mateman; Phillip Gienapp; Marcel E Visser;pmid: 37285433
pmc: PMC10246905
Global warming has shifted phenological traits in many species, but whether species are able to track further increasing temperatures depends on the fitness consequences of additional shifts in phenological traits. To test this, we measured phenology and fitness of great tits ( Parus major ) with genotypes for extremely early and late egg lay dates, obtained from a genomic selection experiment. Females with early genotypes advanced lay dates relative to females with late genotypes, but not relative to nonselected females. Females with early and late genotypes did not differ in the number of fledglings produced, in line with the weak effect of lay date on the number of fledglings produced by nonselected females in the years of the experiment. Our study is the first application of genomic selection in the wild and led to an asymmetric phenotypic response that indicates the presence of constraints toward early, but not late, lay dates.
Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, NorwayPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | E-RESPONSEEC| E-RESPONSEMelanie Lindner; Jip JC Ramakers; Irene Verhagen; Barbara M Tomotani; A Christa Mateman; Phillip Gienapp; Marcel E Visser;pmid: 37285433
pmc: PMC10246905
Global warming has shifted phenological traits in many species, but whether species are able to track further increasing temperatures depends on the fitness consequences of additional shifts in phenological traits. To test this, we measured phenology and fitness of great tits ( Parus major ) with genotypes for extremely early and late egg lay dates, obtained from a genomic selection experiment. Females with early genotypes advanced lay dates relative to females with late genotypes, but not relative to nonselected females. Females with early and late genotypes did not differ in the number of fledglings produced, in line with the weak effect of lay date on the number of fledglings produced by nonselected females in the years of the experiment. Our study is the first application of genomic selection in the wild and led to an asymmetric phenotypic response that indicates the presence of constraints toward early, but not late, lay dates.
Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down Science AdvancesArticle . 2023License: CC BY NCData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2023License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.ade6350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FinlandPublisher:Public Library of Science (PLoS) Authors: Gienapp, Phillip; Bregnballe, Thomas;In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark). Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.
PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FinlandPublisher:Public Library of Science (PLoS) Authors: Gienapp, Phillip; Bregnballe, Thomas;In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark). Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.
PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2012 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Belgium, United Kingdom, Australia, Spain, United KingdomPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Susan E. Hartley; T. Hefin Jones; M. Francesca Cotrufo; Pete Smith; William W. L. Cheung; Rowan F. Sage; Josep Peñuelas; Miko U. F. Kirschbaum; Maria Byrne; David J. Suggett; Rhea Bruno; Yiqi Luo; Steve Long; Steve Long; Ivan A. Janssens; Sharon A. Robinson; Stephen J. Thackeray; Danielle A. Way; Kazuhiko Kobayashi; Carl J. Bernacchi; Carl J. Bernacchi; Phillip Gienapp;The IPCC (Intergovernmental Panel on Climate Change) "Special Report on Global Warming of 1.5°C" presented the ambitious target of needing to achieve zero net emissions by 2050 in order to meet the goals of the Paris Agreement (IPCC, 2018). This report led some governments and jurisdictions to declare a climate emergency (Climate Emergency Declaration, 2019) and prompted the rise of movements of activism and civil disobedience such as the School Strike for the Climate and Extinction Rebellion. The reach of these civil actions extends beyond those directly involved, potentially increasing wider public awareness of climate change. Here, we examine trends in indicators of this wider public awareness and engagement and compare these with major global movements of civil disobedience focussed on climate, the release of substantive climate reports, and global governmental gatherings on climate change. We show that these global movements may be increasing public awareness of, and stimulating public engagement with, issues of climate change. .
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Australia, Belgium, United Kingdom, Australia, Spain, United KingdomPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Susan E. Hartley; T. Hefin Jones; M. Francesca Cotrufo; Pete Smith; William W. L. Cheung; Rowan F. Sage; Josep Peñuelas; Miko U. F. Kirschbaum; Maria Byrne; David J. Suggett; Rhea Bruno; Yiqi Luo; Steve Long; Steve Long; Ivan A. Janssens; Sharon A. Robinson; Stephen J. Thackeray; Danielle A. Way; Kazuhiko Kobayashi; Carl J. Bernacchi; Carl J. Bernacchi; Phillip Gienapp;The IPCC (Intergovernmental Panel on Climate Change) "Special Report on Global Warming of 1.5°C" presented the ambitious target of needing to achieve zero net emissions by 2050 in order to meet the goals of the Paris Agreement (IPCC, 2018). This report led some governments and jurisdictions to declare a climate emergency (Climate Emergency Declaration, 2019) and prompted the rise of movements of activism and civil disobedience such as the School Strike for the Climate and Extinction Rebellion. The reach of these civil actions extends beyond those directly involved, potentially increasing wider public awareness of climate change. Here, we examine trends in indicators of this wider public awareness and engagement and compare these with major global movements of civil disobedience focussed on climate, the release of substantive climate reports, and global governmental gatherings on climate change. We show that these global movements may be increasing public awareness of, and stimulating public engagement with, issues of climate change. .
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020Data sources: Diposit Digital de Documents de la UABGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:The Royal Society Publicly fundedAuthors: Marcel E. Visser; Thomas E. Reed; Phillip Gienapp;pmid: 25165771
pmc: PMC4173688
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:The Royal Society Publicly fundedAuthors: Marcel E. Visser; Thomas E. Reed; Phillip Gienapp;pmid: 25165771
pmc: PMC4173688
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2015Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2014.1611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:Inter-Research Science Center Authors: Gienapp, P; Leimu, R; Merilae, J;doi: 10.3354/cr00712
While the evidence for advancement of spring phenology of animals and plants in response to recent climate change is overwhelming and undisputed, formal meta-analyses of avian migratory phenologies in response to climate change have not been conducted. Likewise, attempts to evaluate the relative roles of phenotypic plasticity versus evolutionary responses of observed advances in arrival times have been few. We conducted a meta-analysis of published data on timing of avian spring migration, with particular emphasis on evaluating whether the observed patterns are consistent with evolutionary explanations. In addition, we compared the observed rates of advance- ment with the theoretically expected rates of 'sustainable evolution'. The meta-analysis confirmed a general advancement of avian migration time and that this advancement is correlated with climatic parameters. However, large-scale geographical patterns and relationships with age at first reproduc- tion—a proxy of generation time—were less clear. The average rate of advancement expressed in haldanes (h = 0.07) was within theoretically predicted limits of 'sustainable evolution'. All in all, while the results are in clear agreement with the assertion that birds are advancing their migratory schedules, they do not unambiguously support or refute the possibility that the observed responses would be genetic, rather than examples of phenotypic plasticity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 145 citations 145 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:Inter-Research Science Center Authors: Gienapp, P; Leimu, R; Merilae, J;doi: 10.3354/cr00712
While the evidence for advancement of spring phenology of animals and plants in response to recent climate change is overwhelming and undisputed, formal meta-analyses of avian migratory phenologies in response to climate change have not been conducted. Likewise, attempts to evaluate the relative roles of phenotypic plasticity versus evolutionary responses of observed advances in arrival times have been few. We conducted a meta-analysis of published data on timing of avian spring migration, with particular emphasis on evaluating whether the observed patterns are consistent with evolutionary explanations. In addition, we compared the observed rates of advance- ment with the theoretically expected rates of 'sustainable evolution'. The meta-analysis confirmed a general advancement of avian migration time and that this advancement is correlated with climatic parameters. However, large-scale geographical patterns and relationships with age at first reproduc- tion—a proxy of generation time—were less clear. The average rate of advancement expressed in haldanes (h = 0.07) was within theoretically predicted limits of 'sustainable evolution'. All in all, while the results are in clear agreement with the assertion that birds are advancing their migratory schedules, they do not unambiguously support or refute the possibility that the observed responses would be genetic, rather than examples of phenotypic plasticity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 145 citations 145 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu