Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Climate Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate Research
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate Research
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Responses to climate change in avian migration time—microevolution versus phenotypic plasticity

Authors: Gienapp, P; Leimu, R; Merilae, J;

Responses to climate change in avian migration time—microevolution versus phenotypic plasticity

Abstract

While the evidence for advancement of spring phenology of animals and plants in response to recent climate change is overwhelming and undisputed, formal meta-analyses of avian migratory phenologies in response to climate change have not been conducted. Likewise, attempts to evaluate the relative roles of phenotypic plasticity versus evolutionary responses of observed advances in arrival times have been few. We conducted a meta-analysis of published data on timing of avian spring migration, with particular emphasis on evaluating whether the observed patterns are consistent with evolutionary explanations. In addition, we compared the observed rates of advance- ment with the theoretically expected rates of 'sustainable evolution'. The meta-analysis confirmed a general advancement of avian migration time and that this advancement is correlated with climatic parameters. However, large-scale geographical patterns and relationships with age at first reproduc- tion—a proxy of generation time—were less clear. The average rate of advancement expressed in haldanes (h = 0.07) was within theoretically predicted limits of 'sustainable evolution'. All in all, while the results are in clear agreement with the assertion that birds are advancing their migratory schedules, they do not unambiguously support or refute the possibility that the observed responses would be genetic, rather than examples of phenotypic plasticity.

Country
United Kingdom
Related Organizations
Keywords

avian migration, meta-analysis evolution, phenology, climate change, NAO, haldane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    145
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
145
Top 1%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Energy Research