- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object 2021 ItalyPublisher:ETA-Florence Renewable Energies Authors: Ganda ET;Urciuolo M;
Urciuolo M
Urciuolo M in OpenAIRECoppola A;
Coppola A
Coppola A in OpenAIREMigliaccio R;
+4 AuthorsMigliaccio R
Migliaccio R in OpenAIREGanda ET;Urciuolo M;
Urciuolo M
Urciuolo M in OpenAIRECoppola A;
Coppola A
Coppola A in OpenAIREMigliaccio R;
Migliaccio R
Migliaccio R in OpenAIRERuoppolo G;
Ruoppolo G
Ruoppolo G in OpenAIREBrachi P;
Scala F; Salatino P;Brachi P
Brachi P in OpenAIREhandle: 20.500.14243/395821
This study looked at the potential synergy of co-pyrolysis of residual lignocellulosic biomass in the form of olive stone with low-density polyethylene in the absence/ presence of solid acid catalyst in a bench scale continuous bubbling fluidised bed reactor. Despite the catalyst lowering the pyrolytic oil yield, there was significant transition in the class of hydrocarbon derivatives formed with catalytic co-pyrolysis yielding much more deoxygenated hydrocarbons in contrast to the product class from the inert sand bed. .-alumina performed much better improving the H/C molar ratio of bio-oil by ~20% over the inert bed co-pyrolysis experiment, both the .-alumina and HZSM-5 catalyst significantly lowered the O/C molar ratio of bio oil recovered. The product stream from both catalysts was relatively high in polycyclic aromatic hydrocarbons (PAHs)due to the strong acid catalysed reactions which promotes strong aromatisation. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 817-823
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/29theubce2021-3bv.2.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/29theubce2021-3bv.2.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Authors:Francesco Saverio Marra;
Francesco Saverio Marra
Francesco Saverio Marra in OpenAIREFrancesco Miccio;
Francesco Miccio
Francesco Miccio in OpenAIRERoberto Solimene;
Roberto Solimene
Roberto Solimene in OpenAIRERiccardo Chirone;
+2 AuthorsRiccardo Chirone
Riccardo Chirone in OpenAIREFrancesco Saverio Marra;
Francesco Saverio Marra
Francesco Saverio Marra in OpenAIREFrancesco Miccio;
Francesco Miccio
Francesco Miccio in OpenAIRERoberto Solimene;
Roberto Solimene
Roberto Solimene in OpenAIRERiccardo Chirone;
Riccardo Chirone
Riccardo Chirone in OpenAIREMassimo Urciuolo;
Massimo Urciuolo
Massimo Urciuolo in OpenAIREMichele Miccio;
Michele Miccio
Michele Miccio in OpenAIREdoi: 10.1002/er.5662
handle: 20.500.14243/403141 , 11386/4757131
The paper deals with the integration between a kinematic Stirling engine and a fluidized bed combustor for micro-scale cogeneration of renewable energy. A pilot-scale facility integrating a 40 kW(t)combustor and a gamma-type Stirling engine (0.5 kW(e)) was set up and tested to demonstrate the feasibility of this solution. The Stirling engine was installed at a lateral wall of the combustor in direct contact with the fluidized bed region. An experimental campaign was executed to assess the performance of the innovative integrated system. The experimental results can be summarized in: (a) very high combustion efficiency with biomass feeding, (b) elevated heat transfer rate to the engine, (c) a relatively small share (about 2 kW(t)) transferred to the engine from the thermal power generated by the combustor (around 13 kW(t)), (d) conversion to electric power close to the upper limit of the engine, (e) limited impact of the Stirling engine on the fluidized bed behavior, for example, temperature. From the analysis of measured variables, the dynamics is dominated by the fast response of the Stirling engine, which rapidly reacts to the slow changes of the fluidized bed combustor regime: the dynamic response of the tested facility as a thermal system was slow, the time constant being of the order of 10 minutes.
IRIS Cnr arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Authors:Luigi Acampora;
Luigi Acampora
Luigi Acampora in OpenAIREGaetano Continillo;
Gaetano Continillo
Gaetano Continillo in OpenAIREFrancesco Marra;
Francesco Marra
Francesco Marra in OpenAIREFrancesco Miccio;
+1 AuthorsFrancesco Miccio
Francesco Miccio in OpenAIRELuigi Acampora;
Luigi Acampora
Luigi Acampora in OpenAIREGaetano Continillo;
Gaetano Continillo
Gaetano Continillo in OpenAIREFrancesco Marra;
Francesco Marra
Francesco Marra in OpenAIREFrancesco Miccio;
Francesco Miccio
Francesco Miccio in OpenAIREMassimo Urciuolo;
Massimo Urciuolo
Massimo Urciuolo in OpenAIREdoi: 10.1002/er.5663
handle: 20.500.14243/403145
A system consisting of a last-generation Stirling engine (SE) and a fuel burner for distributed power generation has been developed and experimentally investigated. The heat generated by the combustion of two liquid fuels, a standard Diesel fuel and a rapeseed oil, is used as a heat source for the SE, that converts part of the thermal energy into mechanical and then electric energy. The hot head of the SE is kept in direct contact with the flame generated by the burner. The burner operating parameters, designed for Diesel fuel, were changed to make it possible to burn vegetable oils, not suitable for internal combustion engines. The possibility of adopting different configurations of the combustion chamber was taken into account to increase the system efficiency. The preliminary configurations adopted allowed to operate this integrated system, obtaining an electric power up to 4.4 kW(el)with a net efficiency of 11.6%.
IRIS Cnr arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors:Brachi Paola;
Bareschino Piero;Brachi Paola
Brachi Paola in OpenAIRETregambi Claudio;
Pepe Francesco; +3 AuthorsTregambi Claudio
Tregambi Claudio in OpenAIREBrachi Paola;
Bareschino Piero;Brachi Paola
Brachi Paola in OpenAIRETregambi Claudio;
Pepe Francesco;Tregambi Claudio
Tregambi Claudio in OpenAIREUrciuolo Massimo;
Urciuolo Massimo
Urciuolo Massimo in OpenAIRERuoppolo Giovanna;
Mancusi Erasmo;Ruoppolo Giovanna
Ruoppolo Giovanna in OpenAIREhandle: 20.500.14243/413274
To promote the integration between solar-driven torrefaction, Power-to-Gas, and Chemical Looping Combustion (CLC) systems, this work numerically analyzes the performances of a novel process layout. Several agro-industrial residues were considered as fuels. CuO supported on zirconia and Ni supported on alumina were considered as oxygen carrier and methanation catalyst, respectively. Torrefied samples were purposely obtained by means of experimental runs carried out for 30 min at 300 °C in a lab-scale fixed bed reactor under a nitrogen atmosphere. Under the adopted conditions it was attained an increase in the lower heating values (LHV) of the selected feedstocks by about 14-49 %, depending on the different composition and reactivity of the parent biomass. Based on these data, it was estimated that, with respect to 10 kg h-1 torrefied biomass fed to the CLC system, a total thermal power production in the range of 28-58 kW can be achieved. CO2 conversion degrees of above 98 % were evaluated for the methanation unit in all considered scenarios. Considering different locations in Italy, PV field sizes ranging from 45 m2 up to 1392 m2 were evaluated for the solar-driven torrefaction unit. Wider sizes were calculated for the hydrogen production one, ranging from 3366 m2 up to 5598 m2. Eventually, an electric energy storage efficiency of around 16 % was assessed for the proposed layout. Finally, it was found that moving from the adopted torrefied feedstocks to the produced gaseous fuel, an increase in the LHV by about 44-55 % can be attained, while concurrently, CO2 emissions are favorably decreased by 98 %.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, United KingdomPublisher:Elsevier BV Authors: Bareschino P.;Mancusi E.;
Mancusi E.
Mancusi E. in OpenAIREUrciuolo M.;
Urciuolo M.
Urciuolo M. in OpenAIREPaulillo A.;
+2 AuthorsPaulillo A.
Paulillo A. in OpenAIREBareschino P.;Mancusi E.;
Mancusi E.
Mancusi E. in OpenAIREUrciuolo M.;
Urciuolo M.
Urciuolo M. in OpenAIREPaulillo A.;
Paulillo A.
Paulillo A. in OpenAIREChirone R.;
Pepe F.;Chirone R.
Chirone R. in OpenAIREhandle: 11588/887240 , 20.500.14243/533262
Abstract The ability to store effectively excess of electrical energy from peaks of production is key to the development of renewable energies. Power-To-Gas, and specifically Power-To-Methane represents one of the most promising option. This works presents an innovative process layout that integrates Chemical Looping Combustion of solid fuels and a Power-to-Methane system. The core of the proposed layout is a multiple interconnected fluidized bed system (MFB) equipped with a two-stage fuel reactor (t-FR). Performances of the system were evaluated by considering a coal as fuel and CuO supported on zirconia as oxygen carrier. A kinetic scheme comprising both heterogeneous and homogeneous reactions occurring in the MFB was considered. The methanation unit was modelled developing a thermodynamic calculation method based on minimization of the free Gibbs energy. The performance of the system was evaluated by considering that the CO/CO2 stream coming from the t-FR reacts over Ni supported on alumina catalyst with a pure H2 stream generated by an array of electrolysis cells. The number of cells to be stacked in the array was evaluated by considering that a constant H2 production able to convert the whole CO/CO2 stream produced by the CLC process should be attained. The environmental performance of the proposed process was quantified using the Life Cycle Assessment (LCA) methodology. The analysis shows i) that the majority originate from the production and disposal of the oxygen carrier used in the t-FR, and ii) that reusing part of the oxygen produced by the electrolysis cells improves significantly the environmental performance of the proposed process.
Archivio della ricer... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:AIDIC Servizi S.r.l. Authors:Brachi P;
Brachi P
Brachi P in OpenAIREMigliaccio R;
Ganda ET;Migliaccio R
Migliaccio R in OpenAIREUrciuolo M;
+4 AuthorsUrciuolo M
Urciuolo M in OpenAIREBrachi P;
Brachi P
Brachi P in OpenAIREMigliaccio R;
Ganda ET;Migliaccio R
Migliaccio R in OpenAIREUrciuolo M;
Urciuolo M
Urciuolo M in OpenAIRERuoppolo G;
Ruoppolo G
Ruoppolo G in OpenAIRECoppola A;
Scala F; Salatino P;Coppola A
Coppola A in OpenAIREhandle: 20.500.14243/413315
Crude bio-oil obtained from fast pyrolysis of biomass and wastes is typically characterised by the presence of high levels of oxygenated compounds, which are mainly responsible for its unfavourable characteristics (e.g., low heating value, high acidity, and poor storage stability). In order to overcome this drawback and favourably produce drop-in fuels, the fast pyrolysis of olive stone (OS), has been studied by giving particular attention to the exploration of operating conditions (i.e. pyrolysis temperature) and strategies (i.e. catalytic pyrolysis and co-pyrolysis) suitable to promote efficient de-oxygenation of bio-oils and improve the quality of the product streams. Steady state fast pyrolysis tests were performed in a bench scale fluidized bed reactor (gas residence time ~1s). Pyrolysis tests were carried out at 500 °C and 600 °C by using either inert sand or ?-alumina catalyst as bed material. Outcomes from the non-catalytic and the catalytic co-pyrolysis of low-density polyethylene (LDPE) and OS (plastic-to-biomass ratio of 20/80) at two different temperatures (500 and 600 °C) are also presented. Preliminary findings highlight that the co-processing of LDPE and OS under non-catalytic conditions stands out for the formation of long-chain aliphatic hydrocarbons in the form of both liquid paraffins and wax deposits, which are well-known to be the primary products evolved from the pyrolysis of polyolefins. The addition of ?-alumina catalyst significantly affects both the distribution and the quality of the pyrolytic products (char, bio-oils, and gas). Under catalytic co-pyrolysis conditions, a marked reduction in the yield of bio-liquid is observed, compensated by a remarkable improvement in its quality, particularly in terms of the formation of light mono-aromatics and a marked decrease in the total amount of the oxygenated compounds. On the downside, however, a significant increase in the production of polycyclic aromatic hydrocarbons (PAHs) is detected. Remarkable benefits are also detected by increasing the co-pyrolysis temperature to 600 °C, particularly in terms of content of oxygenated compounds in the bio-oils, as well as in terms of PAHs and water formation, which decreased considerably. Altogether, preliminary findings of this study suggest that further research efforts are required in order to improve the process performance, for example by optimizing the operating conditions as well as the physicochemical properties of catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d2cc83b0cc8a466121e88ff68b5a6ef4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d2cc83b0cc8a466121e88ff68b5a6ef4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyAuthors:Paola Brachi;
Piero Bareschino; Erasmo Mancusi; Francesco Pepe; +2 AuthorsPaola Brachi
Paola Brachi in OpenAIREPaola Brachi;
Piero Bareschino; Erasmo Mancusi; Francesco Pepe;Paola Brachi
Paola Brachi in OpenAIREMassimo Urciuolo;
Massimo Urciuolo
Massimo Urciuolo in OpenAIREGiovanna Ruoppolo;
Giovanna Ruoppolo
Giovanna Ruoppolo in OpenAIREhandle: 20.500.14243/401566
This work numerically analyzes an innovative process layout considering a torrefaction processes followed by chemical looping combustion of biomass waste, solar hydrogen, and carbon methanation. System performances were evaluated by considering several agro-industrial residues (i.e., sugar beet pulp from sugar production, grape marc from winemaking and olive pits from olive oil production) as fuels, CuO supported on zirconia as oxygen carrier, and Ni supported on alumina as methanation catalyst. The torrefaction pre-treatment was proposed for upgrading the properties, namely heating values, moisture content as well as hydrophobicity, and storability, of the selected biomasses. To this aim, experimental runs were performed at 300 °C and 30 min in a lab-scale fixed bed reactor under an inert atmosphere of nitrogen. The study was complemented with an extensive investigation on fuel properties (i.e., ultimate analysis, proximate analysis, calorific values determination) of both the untreated and the torrefied samples, which provides useful input data for modelling their conversion processes. By considering that only electric energy from renewable sources is used, the capability of the proposed process to be used as an energy storage system was eventually assessed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::92d64179da273cee6c305afc1e3c35ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::92d64179da273cee6c305afc1e3c35ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV handle: 11588/588493 , 20.500.14243/262186 , 11695/75382
A new concept of a system based on a Stirling engine for the combined production of heat and electric power is presented. The system uses two renewable energy sources, direct solar (thermodynamic solar) and biomass (indirect solar energy). Biomass combustion is conducted using a fluidized bed combustor. A second source of energy, given by the direct irradiation of the bed with a concentrated solar radiation, is integrated in the same system, using the fluidized bed as solar receiver. A Scheffler type mirror is adopted to allow irradiation of the system in a fixed focal point. A Stirling engine, integrated into the fluidized bed, converts heat into electricity. Advantages of the proposed solution are illustrated and some preliminary results on the performance of the system, obtained with a simple model, are presented.
CNR ExploRA arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 ItalyPublisher:Informa UK Limited Authors:M Urciuolo;
M Urciuolo
M Urciuolo in OpenAIRER Chirone;
R Chirone
R Chirone in OpenAIREFS Marra;
FS Marra
FS Marra in OpenAIRER Solimene;
R Solimene
R Solimene in OpenAIREhandle: 20.500.14243/357676 , 20.500.14243/337351
A system consisting of a Stirling engine (SE) and a fluidized bed combustor (FBC) for combined heat and power (CHP) generation has been experimentally investigated. The heat generated by combustion of wood pellets is used as source for the SE that converts part of the thermal energy into mechanical and then electric energy. This system, having the heat exchanger of the SE located inside the sand bed of the FBC, presents several advantages: (1) very high bed-to-external surfaces heat exchange coefficients; (2) absence of fouling on the heat exchange surface due to the cleaning action exerted by the fluidized sand particles; and (3) FBCs are able to use a wide variety of biomass fuels. The FBC used in this investigation can develop a thermal power in the range 15-40 kW feeding wood pellets as fuel and changing fluidization conditions and fuel feeding rate. Bed operation temperature was varied in the range 750-850°C. The SE adopted is a ?-type with the heater in form of tube bundle. The performances of this integrated system have been assessed in terms of gaseous emissions and of SE efficiency varying the bed temperature and the pressure of SE working fluid. A mathematical model able to simulate the integration of the FBC with the SE for CHP generation has been developed to quantify the heat fluxes among the different components of the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00102202.2018.1453122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00102202.2018.1453122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2019 ItalyAuthors:Francesco Saverio Marra;
Francesco Saverio Marra
Francesco Saverio Marra in OpenAIREMassimo Urciuolo;
ChinHsiang Cheng;Massimo Urciuolo
Massimo Urciuolo in OpenAIREhandle: 20.500.14243/403132
Environment preservation, energy, and the growing economy are becoming strongly interconnected themes requiring new solutions to be exploited. An example of this interconnection is the demand for the development of almost zero-energy buildings, i.e. buildings capable to be almost autonomous from external energy supply or at least not dependent on the energy supply from utilities. The actual conception of a zero energy building is a very complex system formed by several subsystems, with the consequence that costs are very high and reliability relatively low. The aim of this research program is to deepen the possibility to employ the Stirling engine and cooler technology to lower the number of components required in a near zero-energy building, increase the efficiency, and contemporary raise the reliability of the overall system. Stirling cooler could be used to convert mechanical work into heating and cooling effects and produce the temperature difference by the expanding and compressing the working fluid. A similar concept of the Stirling cooler could also be adopted to develop a heat pump. Compared to the traditional vaporcompression refrigeration systems, the Stirling coolers are of higher efficiency and with no components like compressor, expansion valve, evaporator, or condensers. Therefore, they are considered to be clean cooling devices. On the other hand, the Stirling engine is an external combustion engine, which is compatible with a variety of thermal sources, such as solar radiation, waste heat, geothermal energy, combustion, and so on. With the heat input to the hot end of the engine, the Stirling engine could be operated to produce mechanical work/electricity at high thermal efficiency. In principle, the Stirling machines are capable to provide all the forms of energy (heat, cool, and electricity) that form the almost total energy load of a building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::eb67a030d0b2f76aef8a5284028d9d81&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::eb67a030d0b2f76aef8a5284028d9d81&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu