- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | CRESCENDO, EC | SOLCA, AKA | Inversion Algorithms and ...EC| CRESCENDO ,EC| SOLCA ,AKA| Inversion Algorithms and Quantification of Uncertainties in Atmospheric Remote Sensing - INQUIRECampbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, Thomas; Belviso, Sauveur; Bopp, Laurent; Laine, M.;doi: 10.1038/nature22030
Growth in terrestrial gross primary production (GPP)-the amount of carbon dioxide that is 'fixed' into organic material through the photosynthesis of land plants-may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. As a consequence, modelling estimates of terrestrial carbon storage, and of feedbacks between the carbon cycle and climate, remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century that is based on long-term atmospheric carbonyl sulfide (COS) records, derived from ice-core, firn and ambient air samples. We interpret these records using a model that simulates changes in COS concentration according to changes in its sources and sinks-including a large sink that is related to GPP. We find that the observation-based COS record is most consistent with simulations of climate and the carbon cycle that assume large GPP growth during the twentieth century (31% ± 5% growth; mean ± 95% confidence interval). Although this COS analysis does not directly constrain models of future GPP growth, it does provide a global-scale benchmark for historical carbon-cycle simulations.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature22030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 237 citations 237 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature22030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:American Geophysical Union (AGU) Seongeun Jeong; Xinguang Cui; Donald R. Blake; Ben Miller; Stephen A. Montzka; Arlyn Andrews; Abhinav Guha; Philip Martien; Ray P. Bambha; Brian LaFranchi; Hope A. Michelsen; Craig B. Clements; Pierre Glaize; Marc L. Fischer;doi: 10.1002/2016gl071794
AbstractWe present the first sector‐specific analysis of methane (CH4) emissions from the San Francisco Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during September – December 2015. We apply a hierarchical Bayesian inversion to separate the biological from fossil‐fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a source‐specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4 emissions are 166–289 Gg CH4/yr (at 95% confidence), 1.3–2.3 times higher than a recent inventory with much of the underestimation from landfill. Including the VOCs, 82 ± 27% of total posterior median CH4 emissions are biological and 17 ± 3% fossil fuel, where landfill and natural gas dominate the biological and fossil‐fuel CH4 of prior emissions, respectively.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSan José State University ScholarWorksArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSan José State University ScholarWorksArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Copernicus GmbH Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Y. Gonzalez; Y. Gonzalez; Y. Gonzalez; R. Commane; R. Commane; R. Commane; E. Manninen; B. C. Daube; L. D. Schiferl; J. B. McManus; K. McKain; K. McKain; E. J. Hintsa; E. J. Hintsa; J. W. Elkins; S. A. Montzka; C. Sweeney; F. Moore; F. Moore; J. L. Jimenez; P. Campuzano Jost; T. B. Ryerson; I. Bourgeois; I. Bourgeois; J. Peischl; J. Peischl; C. R. Thompson; E. Ray; E. Ray; P. O. Wennberg; P. O. Wennberg; J. Crounse; M. Kim; H. M. Allen; P. A. Newman; B. B. Stephens; E. C. Apel; R. S. Hornbrook; B. A. Nault; E. Morgan; S. C. Wofsy;Abstract. Nitrous oxide (N2O) is both a greenhouse gas in the troposphere and an ozone depleting substance in the stratosphere and is rapidly increasing in the atmosphere. The spatial distribution of N2O emissions and the sources leading to rising concentrations in the global atmosphere are highly uncertain. We measured the global distribution of tropospheric N2O mixing ratios during the airborne Atmospheric Tomography (ATom) mission. ATom measured mixing ratios of ~300 gas species and aerosol properties in 647 vertical profiles spanning the Pacific, Atlantic, Arctic, and much of the Southern Ocean basins, from nearly Pole to Pole, over four seasons (2016–2018). We measured N2O mixing ratios at 1 Hz using a Quantum Cascade Laser Spectrometer and a new spectral retrieval method to account for the pressure and temperature sensitivity of the instrument when deployed on aircraft. This retrieval strategy improved the precision of our N2O measurements by a factor of 3, enabling us to recover the precision to that of previous missions. Most of the variance of N2O mixing ratios in the troposphere is driven by the influence of N2O-depleted stratospheric air, especially at mid and high latitudes. We observe the downward propagation of lower N2O mixing ratios (compared to surface stations) that tracks the influence of stratosphere-troposphere exchange through the tropospheric column down to the surface, resulting in a seasonal minimum at the surface 2–3 months after the peak stratosphere-to-troposphere exchange in spring. The highest N2O mixing ratios occur close to the equator, extending through the boundary layer and free troposphere. We observed influences from a complex and diverse mixture of N2O sources, with emission source types identified using the rich suite of chemical species measured on ATom and with the geographical origin calculated using an atmospheric transport model. Although ATom flights were mostly over the oceans, the most prominent N2O enhancements were associated with anthropogenic emissions, including industry, oil and gas, urban and biomass burning, especially in the tropical Atlantic outflow from Africa. Enhanced N2O mixing ratios are mostly associated with pollution-related tracers arriving from the coastal area of Nigeria. Peaks of N2O are often well-correlated with indicators of photochemical processing, suggesting possible unexpected source processes. The difficulty of separating the mixture of different sources in the atmosphere contributes to uncertainties in the N2O global budget. The extensive data set from ATom will help improve the understanding of N2O emission processes and their representation in global models.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2021-167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 349visibility views 349 download downloads 355 Powered bymore_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2021-167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: M..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site ,NSF| Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air ,NSF| Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Drilling Site ,NSF| Collaborative Research: Firn structure, interstitial processes and the composition of firn air at Summit, GreenlandAydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J;doi: 10.1038/nature10352
Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United Kingdom, Germany, United StatesPublisher:Copernicus GmbH Funded by:SNSF | Beitrag an den Unterhalt ...SNSF| Beitrag an den Unterhalt und Betrieb der Hochalpinen Forschungsstationen Jungfraujoch und Gornergrat, 2012-2014B. D. Hall; A. Engel; J. Mühle; J. W. Elkins; F. Artuso; E. Atlas; M. Aydin; D. Blake; E.-G. Brunke; S. Chiavarini; P. J. Fraser; J. Happell; P. B. Krummel; I. Levin; M. Loewenstein; M. Maione; S. A. Montzka; S. O'Doherty; S. Reimann; G. Rhoderick; E. S. Saltzman; H. E. Scheel; L. P. Steele; M. K. Vollmer; R. F. Weiss; D. Worthy; Y. Yokouchi;Abstract. The International Halocarbons in Air Comparison Experiment (IHALACE) was conducted to document relationships between calibration scales among various laboratories that measure atmospheric greenhouse and ozone depleting gases. This study included trace gases such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), as well as nitrous oxide, methane, sulfur hexafluoride, very short-lived halocompounds, and carbonyl sulfide. Many of these gases are present in the unpolluted atmosphere at pmol mol−1 (parts per trillion) or nmol mol−1 (parts per billion) levels. Six stainless steel cylinders containing natural and modified natural air samples were circulated among 19 laboratories. Results from this experiment reveal relatively good agreement (within a few percent) among commonly used calibration scales. Scale relationships for some gases, such as CFC-12 and CCl4, were found to be consistent with those derived from estimates of global mean mole fractions, while others, such as halon-1211 and CH3Br, revealed discrepancies. The transfer of calibration scales among laboratories was problematic in many cases, meaning that measurements tied to a particular scale may not, in fact, be compatible. Large scale transfer errors were observed for CH3CCl3 (10–100%) and CCl4 (2–30%), while much smaller scale transfer errors (< 1%) were observed for halon-1211, HCFC-22, and HCFC-142b. These results reveal substantial improvements in calibration over previous comparisons. However, there is room for improvement in communication and coordination of calibration activities with respect to the measurement of halogenated and related trace gases.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/amtd-6...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2013Data sources: Atmospheric Measurement Techniques (AMT)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-7-469-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/amtd-6...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2013Data sources: Atmospheric Measurement Techniques (AMT)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-7-469-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Proceedings of the National Academy of Sciences Ben R. Miller; Ben R. Miller; Maria Obiminda L Cambaliza; Stephen A. Montzka; Robert W. Howarth; Brian H. Stirm; Renee Santoro; Anna Karion; Anna Karion; Paul B. Shepson; Anthony R. Ingraffea; Anthony R. Ingraffea; D. Caulton; Colm Sweeney; Colm Sweeney; Jed P. Sparks; Kenneth J. Davis;Significance We identified a significant regional flux of methane over a large area of shale gas wells in southwestern Pennsylvania in the Marcellus formation and further identified several pads with high methane emissions. These shale gas pads were identified as in the drilling process, a preproduction stage not previously associated with high methane emissions. This work emphasizes the need for top-down identification and component level and event driven measurements of methane leaks to properly inventory the combined methane emissions of natural gas extraction and combustion to better define the impacts of our nation’s increasing reliance on natural gas to meet our energy needs.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefCornell University: eCommons@CornellArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1316546111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 293 citations 293 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefCornell University: eCommons@CornellArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1316546111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Ben R. Miller; Ben R. Miller; C. Siso; C. Siso; Lei Hu; Lei Hu; Stephen A. Montzka; B. D. Hall; Mack McFarland; James W. Elkins; David W. Fahey; Stephen O. Andersen;doi: 10.1021/jp5097376
pmid: 25405363
Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | CRESCENDO, EC | SOLCA, AKA | Inversion Algorithms and ...EC| CRESCENDO ,EC| SOLCA ,AKA| Inversion Algorithms and Quantification of Uncertainties in Atmospheric Remote Sensing - INQUIRECampbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, Thomas; Belviso, Sauveur; Bopp, Laurent; Laine, M.;doi: 10.1038/nature22030
Growth in terrestrial gross primary production (GPP)-the amount of carbon dioxide that is 'fixed' into organic material through the photosynthesis of land plants-may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. As a consequence, modelling estimates of terrestrial carbon storage, and of feedbacks between the carbon cycle and climate, remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century that is based on long-term atmospheric carbonyl sulfide (COS) records, derived from ice-core, firn and ambient air samples. We interpret these records using a model that simulates changes in COS concentration according to changes in its sources and sinks-including a large sink that is related to GPP. We find that the observation-based COS record is most consistent with simulations of climate and the carbon cycle that assume large GPP growth during the twentieth century (31% ± 5% growth; mean ± 95% confidence interval). Although this COS analysis does not directly constrain models of future GPP growth, it does provide a global-scale benchmark for historical carbon-cycle simulations.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature22030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 237 citations 237 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY SAFull-Text: https://hal.science/hal-01606012Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature22030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:American Geophysical Union (AGU) Seongeun Jeong; Xinguang Cui; Donald R. Blake; Ben Miller; Stephen A. Montzka; Arlyn Andrews; Abhinav Guha; Philip Martien; Ray P. Bambha; Brian LaFranchi; Hope A. Michelsen; Craig B. Clements; Pierre Glaize; Marc L. Fischer;doi: 10.1002/2016gl071794
AbstractWe present the first sector‐specific analysis of methane (CH4) emissions from the San Francisco Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during September – December 2015. We apply a hierarchical Bayesian inversion to separate the biological from fossil‐fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a source‐specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4 emissions are 166–289 Gg CH4/yr (at 95% confidence), 1.3–2.3 times higher than a recent inventory with much of the underestimation from landfill. Including the VOCs, 82 ± 27% of total posterior median CH4 emissions are biological and 17 ± 3% fossil fuel, where landfill and natural gas dominate the biological and fossil‐fuel CH4 of prior emissions, respectively.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSan José State University ScholarWorksArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSan José State University ScholarWorksArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl071794&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Copernicus GmbH Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Y. Gonzalez; Y. Gonzalez; Y. Gonzalez; R. Commane; R. Commane; R. Commane; E. Manninen; B. C. Daube; L. D. Schiferl; J. B. McManus; K. McKain; K. McKain; E. J. Hintsa; E. J. Hintsa; J. W. Elkins; S. A. Montzka; C. Sweeney; F. Moore; F. Moore; J. L. Jimenez; P. Campuzano Jost; T. B. Ryerson; I. Bourgeois; I. Bourgeois; J. Peischl; J. Peischl; C. R. Thompson; E. Ray; E. Ray; P. O. Wennberg; P. O. Wennberg; J. Crounse; M. Kim; H. M. Allen; P. A. Newman; B. B. Stephens; E. C. Apel; R. S. Hornbrook; B. A. Nault; E. Morgan; S. C. Wofsy;Abstract. Nitrous oxide (N2O) is both a greenhouse gas in the troposphere and an ozone depleting substance in the stratosphere and is rapidly increasing in the atmosphere. The spatial distribution of N2O emissions and the sources leading to rising concentrations in the global atmosphere are highly uncertain. We measured the global distribution of tropospheric N2O mixing ratios during the airborne Atmospheric Tomography (ATom) mission. ATom measured mixing ratios of ~300 gas species and aerosol properties in 647 vertical profiles spanning the Pacific, Atlantic, Arctic, and much of the Southern Ocean basins, from nearly Pole to Pole, over four seasons (2016–2018). We measured N2O mixing ratios at 1 Hz using a Quantum Cascade Laser Spectrometer and a new spectral retrieval method to account for the pressure and temperature sensitivity of the instrument when deployed on aircraft. This retrieval strategy improved the precision of our N2O measurements by a factor of 3, enabling us to recover the precision to that of previous missions. Most of the variance of N2O mixing ratios in the troposphere is driven by the influence of N2O-depleted stratospheric air, especially at mid and high latitudes. We observe the downward propagation of lower N2O mixing ratios (compared to surface stations) that tracks the influence of stratosphere-troposphere exchange through the tropospheric column down to the surface, resulting in a seasonal minimum at the surface 2–3 months after the peak stratosphere-to-troposphere exchange in spring. The highest N2O mixing ratios occur close to the equator, extending through the boundary layer and free troposphere. We observed influences from a complex and diverse mixture of N2O sources, with emission source types identified using the rich suite of chemical species measured on ATom and with the geographical origin calculated using an atmospheric transport model. Although ATom flights were mostly over the oceans, the most prominent N2O enhancements were associated with anthropogenic emissions, including industry, oil and gas, urban and biomass burning, especially in the tropical Atlantic outflow from Africa. Enhanced N2O mixing ratios are mostly associated with pollution-related tracers arriving from the coastal area of Nigeria. Peaks of N2O are often well-correlated with indicators of photochemical processing, suggesting possible unexpected source processes. The difficulty of separating the mixture of different sources in the atmosphere contributes to uncertainties in the N2O global budget. The extensive data set from ATom will help improve the understanding of N2O emission processes and their representation in global models.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2021-167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 349visibility views 349 download downloads 355 Powered bymore_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2021-167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: M..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site ,NSF| Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air ,NSF| Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Drilling Site ,NSF| Collaborative Research: Firn structure, interstitial processes and the composition of firn air at Summit, GreenlandAydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J;doi: 10.1038/nature10352
Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature10352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United Kingdom, Germany, United StatesPublisher:Copernicus GmbH Funded by:SNSF | Beitrag an den Unterhalt ...SNSF| Beitrag an den Unterhalt und Betrieb der Hochalpinen Forschungsstationen Jungfraujoch und Gornergrat, 2012-2014B. D. Hall; A. Engel; J. Mühle; J. W. Elkins; F. Artuso; E. Atlas; M. Aydin; D. Blake; E.-G. Brunke; S. Chiavarini; P. J. Fraser; J. Happell; P. B. Krummel; I. Levin; M. Loewenstein; M. Maione; S. A. Montzka; S. O'Doherty; S. Reimann; G. Rhoderick; E. S. Saltzman; H. E. Scheel; L. P. Steele; M. K. Vollmer; R. F. Weiss; D. Worthy; Y. Yokouchi;Abstract. The International Halocarbons in Air Comparison Experiment (IHALACE) was conducted to document relationships between calibration scales among various laboratories that measure atmospheric greenhouse and ozone depleting gases. This study included trace gases such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), as well as nitrous oxide, methane, sulfur hexafluoride, very short-lived halocompounds, and carbonyl sulfide. Many of these gases are present in the unpolluted atmosphere at pmol mol−1 (parts per trillion) or nmol mol−1 (parts per billion) levels. Six stainless steel cylinders containing natural and modified natural air samples were circulated among 19 laboratories. Results from this experiment reveal relatively good agreement (within a few percent) among commonly used calibration scales. Scale relationships for some gases, such as CFC-12 and CCl4, were found to be consistent with those derived from estimates of global mean mole fractions, while others, such as halon-1211 and CH3Br, revealed discrepancies. The transfer of calibration scales among laboratories was problematic in many cases, meaning that measurements tied to a particular scale may not, in fact, be compatible. Large scale transfer errors were observed for CH3CCl3 (10–100%) and CCl4 (2–30%), while much smaller scale transfer errors (< 1%) were observed for halon-1211, HCFC-22, and HCFC-142b. These results reveal substantial improvements in calibration over previous comparisons. However, there is room for improvement in communication and coordination of calibration activities with respect to the measurement of halogenated and related trace gases.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/amtd-6...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2013Data sources: Atmospheric Measurement Techniques (AMT)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-7-469-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Measurement Techniques (AMT)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/amtd-6...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2014Data sources: Atmospheric Measurement Techniques (AMT)Atmospheric Measurement Techniques (AMT)Article . 2013Data sources: Atmospheric Measurement Techniques (AMT)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-7-469-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Proceedings of the National Academy of Sciences Ben R. Miller; Ben R. Miller; Maria Obiminda L Cambaliza; Stephen A. Montzka; Robert W. Howarth; Brian H. Stirm; Renee Santoro; Anna Karion; Anna Karion; Paul B. Shepson; Anthony R. Ingraffea; Anthony R. Ingraffea; D. Caulton; Colm Sweeney; Colm Sweeney; Jed P. Sparks; Kenneth J. Davis;Significance We identified a significant regional flux of methane over a large area of shale gas wells in southwestern Pennsylvania in the Marcellus formation and further identified several pads with high methane emissions. These shale gas pads were identified as in the drilling process, a preproduction stage not previously associated with high methane emissions. This work emphasizes the need for top-down identification and component level and event driven measurements of methane leaks to properly inventory the combined methane emissions of natural gas extraction and combustion to better define the impacts of our nation’s increasing reliance on natural gas to meet our energy needs.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefCornell University: eCommons@CornellArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1316546111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 293 citations 293 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefCornell University: eCommons@CornellArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1316546111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Ben R. Miller; Ben R. Miller; C. Siso; C. Siso; Lei Hu; Lei Hu; Stephen A. Montzka; B. D. Hall; Mack McFarland; James W. Elkins; David W. Fahey; Stephen O. Andersen;doi: 10.1021/jp5097376
pmid: 25405363
Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu