- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; Ana Pereira; Frederico Relvas; Marta Boaventura; Adélio Mendes;Abstract In this work, the methanol steam reforming catalyst was considered into the anodic compartment of a high temperature polymer electrolyte fuel cell (HT-PEMFC), where reforming and electrochemical, reactions occur simultaneously. To avoid the anode electro-catalyst poisoning by methanol, a Pd-Ag membrane, with a thickness of a few micrometres, was considered between the reforming catalyst and the membrane electrode assembly. A 3-dimensional non-isothermal simulator was developed in Fluent (Ansys™) considering a packed bed membrane reactor cell (PBMR-C) combined with a HT-PEMFC in a single unit. The performance of the combined unit depends on the permeability, selectivity and stability of Pd-Ag membrane at 473 K. Therefore, a self-supported Pd-Ag membrane with a thickness of 4 μm, was produced with no defects by magnetron sputtering. The membrane showed a H2/N2 molar selectivity of ca. 5800 and permeability of 2.94 × 10–6 mol·m·s–1·m–2·bar−0.8 at 473 K. The novel PBMR-C/HT-PEMFC after proper validation was analysed by simulation, showing high performance, similar to the one obtained with a HT-PEMFC fed with hydrogen and allowed efficient heat integration between electrochemical and MSR reaction. The PBMR-C/HT-PEMFC also demonstrated to be very compact. The advantageous and limitations of the combined PBMR-C/HT-PEMFC unit are discussed based on the simulated results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; Ana Pereira; Frederico Relvas; Marta Boaventura; Adélio Mendes;Abstract In this work, the methanol steam reforming catalyst was considered into the anodic compartment of a high temperature polymer electrolyte fuel cell (HT-PEMFC), where reforming and electrochemical, reactions occur simultaneously. To avoid the anode electro-catalyst poisoning by methanol, a Pd-Ag membrane, with a thickness of a few micrometres, was considered between the reforming catalyst and the membrane electrode assembly. A 3-dimensional non-isothermal simulator was developed in Fluent (Ansys™) considering a packed bed membrane reactor cell (PBMR-C) combined with a HT-PEMFC in a single unit. The performance of the combined unit depends on the permeability, selectivity and stability of Pd-Ag membrane at 473 K. Therefore, a self-supported Pd-Ag membrane with a thickness of 4 μm, was produced with no defects by magnetron sputtering. The membrane showed a H2/N2 molar selectivity of ca. 5800 and permeability of 2.94 × 10–6 mol·m·s–1·m–2·bar−0.8 at 473 K. The novel PBMR-C/HT-PEMFC after proper validation was analysed by simulation, showing high performance, similar to the one obtained with a HT-PEMFC fed with hydrogen and allowed efficient heat integration between electrochemical and MSR reaction. The PBMR-C/HT-PEMFC also demonstrated to be very compact. The advantageous and limitations of the combined PBMR-C/HT-PEMFC unit are discussed based on the simulated results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Fatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; +1 AuthorsFatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; José Carlos Páscoa;AbstractFlow field design is crucial for achieving higher performance in polymer electrolyte membrane fuel cells (PEMFCs). This study uses a two‐phase, multi‐component, and three‐dimensional model to simulate the performance of PEMFCs that use interdigitated flow field design with intermediate blocks on the cathode side. A detailed parametric study is presented to investigate the effects of various geometric and operational parameters. Of the parameters studied, inlet mass flow rate, relative humidity, and rib width had the greatest impact on cell performance. The results show that increasing the cathode stoichiometric ratio resulted in higher fuel cell performance for blocked interdigitated designs compared to parallel designs. In addition, using cathode channels with higher height values resulted in lower PEMFC performance for all flow fields. Higher values of rib/channel width ratio resulted in lower cell performance due to liquid water accumulation in the rib regions. However, at higher rib/channel width ratios, the positive effect of using interdigitated flow designs was more pronounced. Moreover, at a low relative humidity of RH = 25%, a 10.4% higher performance was obtained for the interdigitated type II compared to cases with RH = 100%, due to more effective over‐rib convection and higher water removal.
Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Fatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; +1 AuthorsFatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; José Carlos Páscoa;AbstractFlow field design is crucial for achieving higher performance in polymer electrolyte membrane fuel cells (PEMFCs). This study uses a two‐phase, multi‐component, and three‐dimensional model to simulate the performance of PEMFCs that use interdigitated flow field design with intermediate blocks on the cathode side. A detailed parametric study is presented to investigate the effects of various geometric and operational parameters. Of the parameters studied, inlet mass flow rate, relative humidity, and rib width had the greatest impact on cell performance. The results show that increasing the cathode stoichiometric ratio resulted in higher fuel cell performance for blocked interdigitated designs compared to parallel designs. In addition, using cathode channels with higher height values resulted in lower PEMFC performance for all flow fields. Higher values of rib/channel width ratio resulted in lower cell performance due to liquid water accumulation in the rib regions. However, at higher rib/channel width ratios, the positive effect of using interdigitated flow designs was more pronounced. Moreover, at a low relative humidity of RH = 25%, a 10.4% higher performance was obtained for the interdigitated type II compared to cases with RH = 100%, due to more effective over‐rib convection and higher water removal.
Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jose Pascoa; M. Abdollahzadeh; Ali Akbar Ranjbar; Q. Esmaili;The performance of PEMFC (Polymer Electrolyte Membrane Fuel Cells) with different configuration of gas feeding channels is investigated. Multi-component mixture model is used in order to simulate the two phase flow and transport in cathode gas diffusion layer of PEM fuel cell. This model reduces the numerical simulation complexity by reducing the number of nonlinear governing equations. A wide detailed parametric study is done to investigate different operational parameter such as; pressure difference, operating temperature, different geometrical parameters such as; gas diffusion layer thickness, and various material parameters such as porosity and wettability. Computational simulations have been conducted and the simulation results were compared with the available results in literature and showed very little difference. Results have been presented with different polarization curves, power density and local current density curves and also the plots of saturation level at catalyst layer surface. Furthermore the changes in the place of the interface between single and two phase zones is presented for further understating of the effects of different parameters. This parametric study confirms qualitatively to the validity of the considered model for systematic simulation of the PEM fuel cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jose Pascoa; M. Abdollahzadeh; Ali Akbar Ranjbar; Q. Esmaili;The performance of PEMFC (Polymer Electrolyte Membrane Fuel Cells) with different configuration of gas feeding channels is investigated. Multi-component mixture model is used in order to simulate the two phase flow and transport in cathode gas diffusion layer of PEM fuel cell. This model reduces the numerical simulation complexity by reducing the number of nonlinear governing equations. A wide detailed parametric study is done to investigate different operational parameter such as; pressure difference, operating temperature, different geometrical parameters such as; gas diffusion layer thickness, and various material parameters such as porosity and wettability. Computational simulations have been conducted and the simulation results were compared with the available results in literature and showed very little difference. Results have been presented with different polarization curves, power density and local current density curves and also the plots of saturation level at catalyst layer surface. Furthermore the changes in the place of the interface between single and two phase zones is presented for further understating of the effects of different parameters. This parametric study confirms qualitatively to the validity of the considered model for systematic simulation of the PEM fuel cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Abstract A numerical study is performed on the effects of surface waviness and nanoparticle dispersion on solidification of Cu–water nanofluid inside a vertical enclosure for different Grashof numbers. A geometry with sinusoidally curved wavy surface can be used to enhance heat transfer performance if it is carried out in an appropriate way. Therefore, the enclosure has wavy surfaces on right side with higher temperature and left side with lower temperature, while the top and bottom walls are both flats with insulated condition. Computations are conducted for the surface waviness ranging from 0 to 0.4, Grashof number from 104 to 106 and nanoparticle dispersion from 0 to 0.1. An enthalpy porosity technique is used to trace the solid and liquid interface inside the enclosure. To validate the results, the numerical solutions for special cases in a rectangular cavity were compared with previously published works which are in good overall agreement with those results. The numerical results show that for surface waviness of 0.25 and 0.4, a maximum of 60% decrease in solidification time for Gr = 106 is observed in comparison with Gr = 105 which indicates the increasing effects of natural convection on solidification due to distortion on surface. Therefore, surface waviness can be used to control the solidification time based on enhancing different mechanism of solidification.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Abstract A numerical study is performed on the effects of surface waviness and nanoparticle dispersion on solidification of Cu–water nanofluid inside a vertical enclosure for different Grashof numbers. A geometry with sinusoidally curved wavy surface can be used to enhance heat transfer performance if it is carried out in an appropriate way. Therefore, the enclosure has wavy surfaces on right side with higher temperature and left side with lower temperature, while the top and bottom walls are both flats with insulated condition. Computations are conducted for the surface waviness ranging from 0 to 0.4, Grashof number from 104 to 106 and nanoparticle dispersion from 0 to 0.1. An enthalpy porosity technique is used to trace the solid and liquid interface inside the enclosure. To validate the results, the numerical solutions for special cases in a rectangular cavity were compared with previously published works which are in good overall agreement with those results. The numerical results show that for surface waviness of 0.25 and 0.4, a maximum of 60% decrease in solidification time for Gr = 106 is observed in comparison with Gr = 105 which indicates the increasing effects of natural convection on solidification due to distortion on surface. Therefore, surface waviness can be used to control the solidification time based on enhancing different mechanism of solidification.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Effects of Grashof number and volume fraction of Cu–water nanofluid on natural convection heat transfer and fluid flow inside a two-dimensional wavy enclosure has been investigated numerically. Also, in the presence of nanofluid, the second law of thermodynamics is applied to predict the nature of irreversibility in terms of entropy generation. Finite-Volume numerical procedure with non orthogonal body fitted collocated grid arrangement is used to solve the governing differential equations. Calculation were performed for the Grashof numbers from 104 to 106, nanoparticles volume fraction from 0% to 10% and surface waviness ranging from 0.0 to 0.4 for different patterns of wavy enclosure. Streamlines, isothermal lines, counters of local entropy generation and the variation of local and average Nusselt number are presented and compared with considering the effects of different parameters. The results show that the average heat transfer rate decreases as nanoparticles volume fraction and Grashof number increase. Also, besides decreasing heat transfer rate, the nanoparticles can be used for decreasing the entropy generation.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Effects of Grashof number and volume fraction of Cu–water nanofluid on natural convection heat transfer and fluid flow inside a two-dimensional wavy enclosure has been investigated numerically. Also, in the presence of nanofluid, the second law of thermodynamics is applied to predict the nature of irreversibility in terms of entropy generation. Finite-Volume numerical procedure with non orthogonal body fitted collocated grid arrangement is used to solve the governing differential equations. Calculation were performed for the Grashof numbers from 104 to 106, nanoparticles volume fraction from 0% to 10% and surface waviness ranging from 0.0 to 0.4 for different patterns of wavy enclosure. Streamlines, isothermal lines, counters of local entropy generation and the variation of local and average Nusselt number are presented and compared with considering the effects of different parameters. The results show that the average heat transfer rate decreases as nanoparticles volume fraction and Grashof number increase. Also, besides decreasing heat transfer rate, the nanoparticles can be used for decreasing the entropy generation.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Scientific Publishers Authors: M. Abdollahzadeh; M. Esmailpour; Ali Asghar Sedighi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Scientific Publishers Authors: M. Abdollahzadeh; M. Esmailpour; Ali Asghar Sedighi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Authors: Ali Akbar Ranjbar; M. Abdollahzadeh; Q. Esmaili;Reasonable performance estimation of fuel cell systems with the aid of simple fast and accurate models is necessary for optimized design process of fuel cells. To this end, a quasi two-dimensional (1D+1D), multi-component model is developed in order to analyze the two-phase transport direct methanol fuel cell (DMFC). The effects of diffusion and the mixed potential due to methanol crossover through the membrane are also considered. Different operating parameters, including temperature and the methanol feed concentration are examined and their effects are discussed. The present simple and easy to implement model can be as accurate as a complete two-dimensional model. Furthermore, it is seen that the simplification made in this model reduce the computational time and is therefore suitable for inclusion in real-time system level DMFC calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Authors: Ali Akbar Ranjbar; M. Abdollahzadeh; Q. Esmaili;Reasonable performance estimation of fuel cell systems with the aid of simple fast and accurate models is necessary for optimized design process of fuel cells. To this end, a quasi two-dimensional (1D+1D), multi-component model is developed in order to analyze the two-phase transport direct methanol fuel cell (DMFC). The effects of diffusion and the mixed potential due to methanol crossover through the membrane are also considered. Different operating parameters, including temperature and the methanol feed concentration are examined and their effects are discussed. The present simple and easy to implement model can be as accurate as a complete two-dimensional model. Furthermore, it is seen that the simplification made in this model reduce the computational time and is therefore suitable for inclusion in real-time system level DMFC calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; M. Abdollahzadeh; Adélio Mendes; Nuno M. Delgado; Anders Bentien; Ricardo Monteiro;Abstract Flow batteries exhibit relatively low power density owing to ohmic and concentration overpotentials, which leads to higher system costs. In this work, a phenomenological model of a vanadium redox flow battery (VRFB) equipped with an anion exchange membrane (AEM) was developed and validated. The model is used to assess the concentration overpotential during charge-discharge cycling at different operating conditions and a method to determine the mass transfer coefficient is presented. Also, a strategy to reduce the concentration overpotential is proposed. The simulated charge-discharge curve displays the lowest relative error reported in the literature for VRFB equipped with an AEM; the results reveal that the mass transfer coefficient is overestimated in most models in the literature. It is demonstrated that the concentration overpotentials during charging and discharging steps are not equal owing to a mismatch between the state of charge and the state of discharge. Also, the current density has a greater impact on this overpotential than the flow rate. Higher overpotentials were found near the membrane since the electronic conductivity is higher than the ionic conductivity. The simulation results show that positioning the distribution channels close to the membrane allows a reduction of the concentration overpotential up to 3.9%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; M. Abdollahzadeh; Adélio Mendes; Nuno M. Delgado; Anders Bentien; Ricardo Monteiro;Abstract Flow batteries exhibit relatively low power density owing to ohmic and concentration overpotentials, which leads to higher system costs. In this work, a phenomenological model of a vanadium redox flow battery (VRFB) equipped with an anion exchange membrane (AEM) was developed and validated. The model is used to assess the concentration overpotential during charge-discharge cycling at different operating conditions and a method to determine the mass transfer coefficient is presented. Also, a strategy to reduce the concentration overpotential is proposed. The simulated charge-discharge curve displays the lowest relative error reported in the literature for VRFB equipped with an AEM; the results reveal that the mass transfer coefficient is overestimated in most models in the literature. It is demonstrated that the concentration overpotentials during charging and discharging steps are not equal owing to a mismatch between the state of charge and the state of discharge. Also, the current density has a greater impact on this overpotential than the flow rate. Higher overpotentials were found near the membrane since the electronic conductivity is higher than the ionic conductivity. The simulation results show that positioning the distribution channels close to the membrane allows a reduction of the concentration overpotential up to 3.9%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV A. Hamrang; M. Abdollahzadeh; A. Moradi Bilondi; F. Bagherighajari; S.M. Rahgoshay; J.C. Pascoa;International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV A. Hamrang; M. Abdollahzadeh; A. Moradi Bilondi; F. Bagherighajari; S.M. Rahgoshay; J.C. Pascoa;International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mohammad Jafar Kermani; Joachim Scholta; Asrin Ghanbarian;Abstract One key strategy for maximizing the performance of fuel cells is the choice of proper flow field pattern. In this paper, a procedure was developed for the proper design of parallel serpentine flow field for proton exchange membrane fuel cells. Several parameters including the channel width and height, the rib between two adjacent channels, and the numbers of parallel channels and serpentine turns were considered and all the possible flow field configurations within the range of these design parameters were defined. In the next step, six consecutive constraining filters were defined and enforced to all the possible flow field configurations. In the final step, a complete three dimensional simulations were conducted for the remaining cases. Based on the results of the simulations, these cases were ranked, with the best case corresponds to the flow field with the minimum pressure drop, the maximum oxygen content at the surface of catalyst layer, maximum uniformity of oxygen distribution within the catalyst layer and minimum content of the condensate produced within the catalyst layer.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mohammad Jafar Kermani; Joachim Scholta; Asrin Ghanbarian;Abstract One key strategy for maximizing the performance of fuel cells is the choice of proper flow field pattern. In this paper, a procedure was developed for the proper design of parallel serpentine flow field for proton exchange membrane fuel cells. Several parameters including the channel width and height, the rib between two adjacent channels, and the numbers of parallel channels and serpentine turns were considered and all the possible flow field configurations within the range of these design parameters were defined. In the next step, six consecutive constraining filters were defined and enforced to all the possible flow field configurations. In the final step, a complete three dimensional simulations were conducted for the remaining cases. Based on the results of the simulations, these cases were ranked, with the best case corresponds to the flow field with the minimum pressure drop, the maximum oxygen content at the surface of catalyst layer, maximum uniformity of oxygen distribution within the catalyst layer and minimum content of the condensate produced within the catalyst layer.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; Ana Pereira; Frederico Relvas; Marta Boaventura; Adélio Mendes;Abstract In this work, the methanol steam reforming catalyst was considered into the anodic compartment of a high temperature polymer electrolyte fuel cell (HT-PEMFC), where reforming and electrochemical, reactions occur simultaneously. To avoid the anode electro-catalyst poisoning by methanol, a Pd-Ag membrane, with a thickness of a few micrometres, was considered between the reforming catalyst and the membrane electrode assembly. A 3-dimensional non-isothermal simulator was developed in Fluent (Ansys™) considering a packed bed membrane reactor cell (PBMR-C) combined with a HT-PEMFC in a single unit. The performance of the combined unit depends on the permeability, selectivity and stability of Pd-Ag membrane at 473 K. Therefore, a self-supported Pd-Ag membrane with a thickness of 4 μm, was produced with no defects by magnetron sputtering. The membrane showed a H2/N2 molar selectivity of ca. 5800 and permeability of 2.94 × 10–6 mol·m·s–1·m–2·bar−0.8 at 473 K. The novel PBMR-C/HT-PEMFC after proper validation was analysed by simulation, showing high performance, similar to the one obtained with a HT-PEMFC fed with hydrogen and allowed efficient heat integration between electrochemical and MSR reaction. The PBMR-C/HT-PEMFC also demonstrated to be very compact. The advantageous and limitations of the combined PBMR-C/HT-PEMFC unit are discussed based on the simulated results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; Ana Pereira; Frederico Relvas; Marta Boaventura; Adélio Mendes;Abstract In this work, the methanol steam reforming catalyst was considered into the anodic compartment of a high temperature polymer electrolyte fuel cell (HT-PEMFC), where reforming and electrochemical, reactions occur simultaneously. To avoid the anode electro-catalyst poisoning by methanol, a Pd-Ag membrane, with a thickness of a few micrometres, was considered between the reforming catalyst and the membrane electrode assembly. A 3-dimensional non-isothermal simulator was developed in Fluent (Ansys™) considering a packed bed membrane reactor cell (PBMR-C) combined with a HT-PEMFC in a single unit. The performance of the combined unit depends on the permeability, selectivity and stability of Pd-Ag membrane at 473 K. Therefore, a self-supported Pd-Ag membrane with a thickness of 4 μm, was produced with no defects by magnetron sputtering. The membrane showed a H2/N2 molar selectivity of ca. 5800 and permeability of 2.94 × 10–6 mol·m·s–1·m–2·bar−0.8 at 473 K. The novel PBMR-C/HT-PEMFC after proper validation was analysed by simulation, showing high performance, similar to the one obtained with a HT-PEMFC fed with hydrogen and allowed efficient heat integration between electrochemical and MSR reaction. The PBMR-C/HT-PEMFC also demonstrated to be very compact. The advantageous and limitations of the combined PBMR-C/HT-PEMFC unit are discussed based on the simulated results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.02.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Fatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; +1 AuthorsFatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; José Carlos Páscoa;AbstractFlow field design is crucial for achieving higher performance in polymer electrolyte membrane fuel cells (PEMFCs). This study uses a two‐phase, multi‐component, and three‐dimensional model to simulate the performance of PEMFCs that use interdigitated flow field design with intermediate blocks on the cathode side. A detailed parametric study is presented to investigate the effects of various geometric and operational parameters. Of the parameters studied, inlet mass flow rate, relative humidity, and rib width had the greatest impact on cell performance. The results show that increasing the cathode stoichiometric ratio resulted in higher fuel cell performance for blocked interdigitated designs compared to parallel designs. In addition, using cathode channels with higher height values resulted in lower PEMFC performance for all flow fields. Higher values of rib/channel width ratio resulted in lower cell performance due to liquid water accumulation in the rib regions. However, at higher rib/channel width ratios, the positive effect of using interdigitated flow designs was more pronounced. Moreover, at a low relative humidity of RH = 25%, a 10.4% higher performance was obtained for the interdigitated type II compared to cases with RH = 100%, due to more effective over‐rib convection and higher water removal.
Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Fatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; +1 AuthorsFatemeh Bagherighajari; Abbas Moradi Bilondi; Mohammadmahdi Abdollahzadehsangroudi; Ali Hamrang; José Carlos Páscoa;AbstractFlow field design is crucial for achieving higher performance in polymer electrolyte membrane fuel cells (PEMFCs). This study uses a two‐phase, multi‐component, and three‐dimensional model to simulate the performance of PEMFCs that use interdigitated flow field design with intermediate blocks on the cathode side. A detailed parametric study is presented to investigate the effects of various geometric and operational parameters. Of the parameters studied, inlet mass flow rate, relative humidity, and rib width had the greatest impact on cell performance. The results show that increasing the cathode stoichiometric ratio resulted in higher fuel cell performance for blocked interdigitated designs compared to parallel designs. In addition, using cathode channels with higher height values resulted in lower PEMFC performance for all flow fields. Higher values of rib/channel width ratio resulted in lower cell performance due to liquid water accumulation in the rib regions. However, at higher rib/channel width ratios, the positive effect of using interdigitated flow designs was more pronounced. Moreover, at a low relative humidity of RH = 25%, a 10.4% higher performance was obtained for the interdigitated type II compared to cases with RH = 100%, due to more effective over‐rib convection and higher water removal.
Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel Cells arrow_drop_down Fuel CellsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.202200188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jose Pascoa; M. Abdollahzadeh; Ali Akbar Ranjbar; Q. Esmaili;The performance of PEMFC (Polymer Electrolyte Membrane Fuel Cells) with different configuration of gas feeding channels is investigated. Multi-component mixture model is used in order to simulate the two phase flow and transport in cathode gas diffusion layer of PEM fuel cell. This model reduces the numerical simulation complexity by reducing the number of nonlinear governing equations. A wide detailed parametric study is done to investigate different operational parameter such as; pressure difference, operating temperature, different geometrical parameters such as; gas diffusion layer thickness, and various material parameters such as porosity and wettability. Computational simulations have been conducted and the simulation results were compared with the available results in literature and showed very little difference. Results have been presented with different polarization curves, power density and local current density curves and also the plots of saturation level at catalyst layer surface. Furthermore the changes in the place of the interface between single and two phase zones is presented for further understating of the effects of different parameters. This parametric study confirms qualitatively to the validity of the considered model for systematic simulation of the PEM fuel cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jose Pascoa; M. Abdollahzadeh; Ali Akbar Ranjbar; Q. Esmaili;The performance of PEMFC (Polymer Electrolyte Membrane Fuel Cells) with different configuration of gas feeding channels is investigated. Multi-component mixture model is used in order to simulate the two phase flow and transport in cathode gas diffusion layer of PEM fuel cell. This model reduces the numerical simulation complexity by reducing the number of nonlinear governing equations. A wide detailed parametric study is done to investigate different operational parameter such as; pressure difference, operating temperature, different geometrical parameters such as; gas diffusion layer thickness, and various material parameters such as porosity and wettability. Computational simulations have been conducted and the simulation results were compared with the available results in literature and showed very little difference. Results have been presented with different polarization curves, power density and local current density curves and also the plots of saturation level at catalyst layer surface. Furthermore the changes in the place of the interface between single and two phase zones is presented for further understating of the effects of different parameters. This parametric study confirms qualitatively to the validity of the considered model for systematic simulation of the PEM fuel cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.01.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Abstract A numerical study is performed on the effects of surface waviness and nanoparticle dispersion on solidification of Cu–water nanofluid inside a vertical enclosure for different Grashof numbers. A geometry with sinusoidally curved wavy surface can be used to enhance heat transfer performance if it is carried out in an appropriate way. Therefore, the enclosure has wavy surfaces on right side with higher temperature and left side with lower temperature, while the top and bottom walls are both flats with insulated condition. Computations are conducted for the surface waviness ranging from 0 to 0.4, Grashof number from 104 to 106 and nanoparticle dispersion from 0 to 0.1. An enthalpy porosity technique is used to trace the solid and liquid interface inside the enclosure. To validate the results, the numerical solutions for special cases in a rectangular cavity were compared with previously published works which are in good overall agreement with those results. The numerical results show that for surface waviness of 0.25 and 0.4, a maximum of 60% decrease in solidification time for Gr = 106 is observed in comparison with Gr = 105 which indicates the increasing effects of natural convection on solidification due to distortion on surface. Therefore, surface waviness can be used to control the solidification time based on enhancing different mechanism of solidification.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Abstract A numerical study is performed on the effects of surface waviness and nanoparticle dispersion on solidification of Cu–water nanofluid inside a vertical enclosure for different Grashof numbers. A geometry with sinusoidally curved wavy surface can be used to enhance heat transfer performance if it is carried out in an appropriate way. Therefore, the enclosure has wavy surfaces on right side with higher temperature and left side with lower temperature, while the top and bottom walls are both flats with insulated condition. Computations are conducted for the surface waviness ranging from 0 to 0.4, Grashof number from 104 to 106 and nanoparticle dispersion from 0 to 0.1. An enthalpy porosity technique is used to trace the solid and liquid interface inside the enclosure. To validate the results, the numerical solutions for special cases in a rectangular cavity were compared with previously published works which are in good overall agreement with those results. The numerical results show that for surface waviness of 0.25 and 0.4, a maximum of 60% decrease in solidification time for Gr = 106 is observed in comparison with Gr = 105 which indicates the increasing effects of natural convection on solidification due to distortion on surface. Therefore, surface waviness can be used to control the solidification time based on enhancing different mechanism of solidification.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Effects of Grashof number and volume fraction of Cu–water nanofluid on natural convection heat transfer and fluid flow inside a two-dimensional wavy enclosure has been investigated numerically. Also, in the presence of nanofluid, the second law of thermodynamics is applied to predict the nature of irreversibility in terms of entropy generation. Finite-Volume numerical procedure with non orthogonal body fitted collocated grid arrangement is used to solve the governing differential equations. Calculation were performed for the Grashof numbers from 104 to 106, nanoparticles volume fraction from 0% to 10% and surface waviness ranging from 0.0 to 0.4 for different patterns of wavy enclosure. Streamlines, isothermal lines, counters of local entropy generation and the variation of local and average Nusselt number are presented and compared with considering the effects of different parameters. The results show that the average heat transfer rate decreases as nanoparticles volume fraction and Grashof number increase. Also, besides decreasing heat transfer rate, the nanoparticles can be used for decreasing the entropy generation.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mehdi Esmaeilpour;Effects of Grashof number and volume fraction of Cu–water nanofluid on natural convection heat transfer and fluid flow inside a two-dimensional wavy enclosure has been investigated numerically. Also, in the presence of nanofluid, the second law of thermodynamics is applied to predict the nature of irreversibility in terms of entropy generation. Finite-Volume numerical procedure with non orthogonal body fitted collocated grid arrangement is used to solve the governing differential equations. Calculation were performed for the Grashof numbers from 104 to 106, nanoparticles volume fraction from 0% to 10% and surface waviness ranging from 0.0 to 0.4 for different patterns of wavy enclosure. Streamlines, isothermal lines, counters of local entropy generation and the variation of local and average Nusselt number are presented and compared with considering the effects of different parameters. The results show that the average heat transfer rate decreases as nanoparticles volume fraction and Grashof number increase. Also, besides decreasing heat transfer rate, the nanoparticles can be used for decreasing the entropy generation.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu116 citations 116 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2011.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Scientific Publishers Authors: M. Abdollahzadeh; M. Esmailpour; Ali Asghar Sedighi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Scientific Publishers Authors: M. Abdollahzadeh; M. Esmailpour; Ali Asghar Sedighi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jon.2018.1431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Authors: Ali Akbar Ranjbar; M. Abdollahzadeh; Q. Esmaili;Reasonable performance estimation of fuel cell systems with the aid of simple fast and accurate models is necessary for optimized design process of fuel cells. To this end, a quasi two-dimensional (1D+1D), multi-component model is developed in order to analyze the two-phase transport direct methanol fuel cell (DMFC). The effects of diffusion and the mixed potential due to methanol crossover through the membrane are also considered. Different operating parameters, including temperature and the methanol feed concentration are examined and their effects are discussed. The present simple and easy to implement model can be as accurate as a complete two-dimensional model. Furthermore, it is seen that the simplification made in this model reduce the computational time and is therefore suitable for inclusion in real-time system level DMFC calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Authors: Ali Akbar Ranjbar; M. Abdollahzadeh; Q. Esmaili;Reasonable performance estimation of fuel cell systems with the aid of simple fast and accurate models is necessary for optimized design process of fuel cells. To this end, a quasi two-dimensional (1D+1D), multi-component model is developed in order to analyze the two-phase transport direct methanol fuel cell (DMFC). The effects of diffusion and the mixed potential due to methanol crossover through the membrane are also considered. Different operating parameters, including temperature and the methanol feed concentration are examined and their effects are discussed. The present simple and easy to implement model can be as accurate as a complete two-dimensional model. Furthermore, it is seen that the simplification made in this model reduce the computational time and is therefore suitable for inclusion in real-time system level DMFC calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15435075.2011.647165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; M. Abdollahzadeh; Adélio Mendes; Nuno M. Delgado; Anders Bentien; Ricardo Monteiro;Abstract Flow batteries exhibit relatively low power density owing to ohmic and concentration overpotentials, which leads to higher system costs. In this work, a phenomenological model of a vanadium redox flow battery (VRFB) equipped with an anion exchange membrane (AEM) was developed and validated. The model is used to assess the concentration overpotential during charge-discharge cycling at different operating conditions and a method to determine the mass transfer coefficient is presented. Also, a strategy to reduce the concentration overpotential is proposed. The simulated charge-discharge curve displays the lowest relative error reported in the literature for VRFB equipped with an AEM; the results reveal that the mass transfer coefficient is overestimated in most models in the literature. It is demonstrated that the concentration overpotentials during charging and discharging steps are not equal owing to a mismatch between the state of charge and the state of discharge. Also, the current density has a greater impact on this overpotential than the flow rate. Higher overpotentials were found near the membrane since the electronic conductivity is higher than the ionic conductivity. The simulation results show that positioning the distribution channels close to the membrane allows a reduction of the concentration overpotential up to 3.9%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Denmark, PortugalPublisher:Elsevier BV Paulo Ribeirinha; M. Abdollahzadeh; M. Abdollahzadeh; Adélio Mendes; Nuno M. Delgado; Anders Bentien; Ricardo Monteiro;Abstract Flow batteries exhibit relatively low power density owing to ohmic and concentration overpotentials, which leads to higher system costs. In this work, a phenomenological model of a vanadium redox flow battery (VRFB) equipped with an anion exchange membrane (AEM) was developed and validated. The model is used to assess the concentration overpotential during charge-discharge cycling at different operating conditions and a method to determine the mass transfer coefficient is presented. Also, a strategy to reduce the concentration overpotential is proposed. The simulated charge-discharge curve displays the lowest relative error reported in the literature for VRFB equipped with an AEM; the results reveal that the mass transfer coefficient is overestimated in most models in the literature. It is demonstrated that the concentration overpotentials during charging and discharging steps are not equal owing to a mismatch between the state of charge and the state of discharge. Also, the current density has a greater impact on this overpotential than the flow rate. Higher overpotentials were found near the membrane since the electronic conductivity is higher than the ionic conductivity. The simulation results show that positioning the distribution channels close to the membrane allows a reduction of the concentration overpotential up to 3.9%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.229142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV A. Hamrang; M. Abdollahzadeh; A. Moradi Bilondi; F. Bagherighajari; S.M. Rahgoshay; J.C. Pascoa;International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV A. Hamrang; M. Abdollahzadeh; A. Moradi Bilondi; F. Bagherighajari; S.M. Rahgoshay; J.C. Pascoa;International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.11.122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mohammad Jafar Kermani; Joachim Scholta; Asrin Ghanbarian;Abstract One key strategy for maximizing the performance of fuel cells is the choice of proper flow field pattern. In this paper, a procedure was developed for the proper design of parallel serpentine flow field for proton exchange membrane fuel cells. Several parameters including the channel width and height, the rib between two adjacent channels, and the numbers of parallel channels and serpentine turns were considered and all the possible flow field configurations within the range of these design parameters were defined. In the next step, six consecutive constraining filters were defined and enforced to all the possible flow field configurations. In the final step, a complete three dimensional simulations were conducted for the remaining cases. Based on the results of the simulations, these cases were ranked, with the best case corresponds to the flow field with the minimum pressure drop, the maximum oxygen content at the surface of catalyst layer, maximum uniformity of oxygen distribution within the catalyst layer and minimum content of the condensate produced within the catalyst layer.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: M. Abdollahzadeh; Mohammad Jafar Kermani; Joachim Scholta; Asrin Ghanbarian;Abstract One key strategy for maximizing the performance of fuel cells is the choice of proper flow field pattern. In this paper, a procedure was developed for the proper design of parallel serpentine flow field for proton exchange membrane fuel cells. Several parameters including the channel width and height, the rib between two adjacent channels, and the numbers of parallel channels and serpentine turns were considered and all the possible flow field configurations within the range of these design parameters were defined. In the next step, six consecutive constraining filters were defined and enforced to all the possible flow field configurations. In the final step, a complete three dimensional simulations were conducted for the remaining cases. Based on the results of the simulations, these cases were ranked, with the best case corresponds to the flow field with the minimum pressure drop, the maximum oxygen content at the surface of catalyst layer, maximum uniformity of oxygen distribution within the catalyst layer and minimum content of the condensate produced within the catalyst layer.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.04.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu