- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 SwitzerlandPublisher:Wiley Marco Conedera; Daniele Colombaroli; Daniele Colombaroli; Daniele Colombaroli; Cathy Whitlock; Cathy Whitlock; Cathy Whitlock; Willy Tinner; Willy Tinner;pmid: 28574184
AbstractConservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.
Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwitzerlandPublisher:Wiley Marco Conedera; Daniele Colombaroli; Daniele Colombaroli; Daniele Colombaroli; Cathy Whitlock; Cathy Whitlock; Cathy Whitlock; Willy Tinner; Willy Tinner;pmid: 28574184
AbstractConservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.
Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Switzerland, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Long-term dynamics of Med...SNSF| Long-term dynamics of Mediterranean vegetation in response to climatic change and disturbance: combining paleoecological and dynamic modelling approachesBettina Gnaegi; César Morales-Molino; Giorgia Beffa; Willy Tinner; Daniele Colombaroli; Salvatore Pasta; W.O. van der Knaap; Tommaso La Mantia; Jacqueline F. N. van Leeuwen; Petra Kaltenrieder; Paul D. Henne; Paul D. Henne; Elisa Vescovi;handle: 20.500.14243/385014 , 10447/199977
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixe, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Switzerland, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Long-term dynamics of Med...SNSF| Long-term dynamics of Mediterranean vegetation in response to climatic change and disturbance: combining paleoecological and dynamic modelling approachesBettina Gnaegi; César Morales-Molino; Giorgia Beffa; Willy Tinner; Daniele Colombaroli; Salvatore Pasta; W.O. van der Knaap; Tommaso La Mantia; Jacqueline F. N. van Leeuwen; Petra Kaltenrieder; Paul D. Henne; Paul D. Henne; Elisa Vescovi;handle: 20.500.14243/385014 , 10447/199977
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixe, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Switzerland, FrancePublisher:Wiley Willy Tinner; Mercedes García-Antón; Daniele Colombaroli; César Morales-Molino; César Morales-Molino;Summary Pinus nigra Arn. forests dominated over extensive areas of the Northern Iberian Plateau (Spain) during the Holocene, but a strong decline during the historical period (c. 1300–700 cal. bp) led to the present fragmented populations. This demise has been generally attributed to land‐use changes or climate, but the specific roles of disturbance regimes such as fire variability and grazing on the long‐term are not fully understood yet. We combine multi‐proxy palaeoecological data (fossil pollen, spores, conifer stomata, microscopic and macroscopic charcoal) together with quantitative analyses (ordination and peak detection) from a high‐resolution sedimentary sequence (Tubilla del Lago, 900 m a.s.l.) to assess the causes of pine forests demise. A new microscopic charcoal record from an additional sequence (Espinosa de Cerrato, 885 m a.s.l.) is used to assess burning and pine decline at a more regional (100‐km radius) scale. Pinus nigra forests could cope with drought and fire regime variability (FRI = 110–500 years), with forest recovery taking c. 100–200 years after fires. Only at 1300–1200 cal. bp a long‐lasting irrecoverable demise of P. nigra forests occurred when human‐induced fires together with arable and pastoral farming became widespread in the area. Subsequently, Quercus woodlands expanded in the remnant patchy pinewoods. This vegetation shift was primarily caused by three particularly important fire episodes in less than a century (c. 1300–1200 cal. bp). Synthesis. Pinus nigra forests have shown a millennial resilience to the natural fire regime of the Northern Iberian Plateau that was characterized by relatively frequent small‐moderate fires and rare high‐intensity fires. However, frequent human‐caused crown fires and the onset of intensive farming caused their demise over an extensive area. Ongoing land‐use abandonment in the Iberian mountains could promote the occurrence of high‐intensity, severe fires due to the rapid build‐up of high fuel loads. Forest management could mimic the natural fire regime by periodically reducing fuel loads for a transitional period until natural disturbance variability is fully restored, thus preserving these relict native plant communities.
Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Switzerland, FrancePublisher:Wiley Willy Tinner; Mercedes García-Antón; Daniele Colombaroli; César Morales-Molino; César Morales-Molino;Summary Pinus nigra Arn. forests dominated over extensive areas of the Northern Iberian Plateau (Spain) during the Holocene, but a strong decline during the historical period (c. 1300–700 cal. bp) led to the present fragmented populations. This demise has been generally attributed to land‐use changes or climate, but the specific roles of disturbance regimes such as fire variability and grazing on the long‐term are not fully understood yet. We combine multi‐proxy palaeoecological data (fossil pollen, spores, conifer stomata, microscopic and macroscopic charcoal) together with quantitative analyses (ordination and peak detection) from a high‐resolution sedimentary sequence (Tubilla del Lago, 900 m a.s.l.) to assess the causes of pine forests demise. A new microscopic charcoal record from an additional sequence (Espinosa de Cerrato, 885 m a.s.l.) is used to assess burning and pine decline at a more regional (100‐km radius) scale. Pinus nigra forests could cope with drought and fire regime variability (FRI = 110–500 years), with forest recovery taking c. 100–200 years after fires. Only at 1300–1200 cal. bp a long‐lasting irrecoverable demise of P. nigra forests occurred when human‐induced fires together with arable and pastoral farming became widespread in the area. Subsequently, Quercus woodlands expanded in the remnant patchy pinewoods. This vegetation shift was primarily caused by three particularly important fire episodes in less than a century (c. 1300–1200 cal. bp). Synthesis. Pinus nigra forests have shown a millennial resilience to the natural fire regime of the Northern Iberian Plateau that was characterized by relatively frequent small‐moderate fires and rare high‐intensity fires. However, frequent human‐caused crown fires and the onset of intensive farming caused their demise over an extensive area. Ongoing land‐use abandonment in the Iberian mountains could promote the occurrence of high‐intensity, severe fires due to the rapid build‐up of high fuel loads. Forest management could mimic the natural fire regime by periodically reducing fuel loads for a transitional period until natural disturbance variability is fully restored, thus preserving these relict native plant communities.
Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Proceedings of the National Academy of Sciences Marlon, Jennifer R.; Bartlein, Patrick J.; Gavin, Daniel G.; Long, Colin J.; Anderson, R. Scott; Briles, Christy E.; Brown, Kendrick J.; Colombaroli, Daniele; Hallett, Douglas J.; Power, Mitchell J.; Scharf, Elizabeth A.; Walsh, Megan K.;Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400–1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950–1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest “fire deficit” in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 459 citations 459 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Proceedings of the National Academy of Sciences Marlon, Jennifer R.; Bartlein, Patrick J.; Gavin, Daniel G.; Long, Colin J.; Anderson, R. Scott; Briles, Christy E.; Brown, Kendrick J.; Colombaroli, Daniele; Hallett, Douglas J.; Power, Mitchell J.; Scharf, Elizabeth A.; Walsh, Megan K.;Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400–1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950–1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest “fire deficit” in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 459 citations 459 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Vanessa Gelorini; Dirk Verschuren; Immaculate Ssemmanda; Daniele Colombaroli;pmid: 24677504
AbstractRainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Vanessa Gelorini; Dirk Verschuren; Immaculate Ssemmanda; Daniele Colombaroli;pmid: 24677504
AbstractRainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Germany, United Kingdom, Australia, Australia, Australia, United States, Australia, Chile, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.-L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.-J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goñi, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.;Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 583 citations 583 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Germany, United Kingdom, Australia, Australia, Australia, United States, Australia, Chile, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.-L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.-J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goñi, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.;Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 583 citations 583 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, Switzerland, France, Germany, Australia, United Kingdom, Germany, Switzerland, Australia, Switzerland, Australia, Australia, Italy, United KingdomPublisher:American Geophysical Union (AGU) Peter Kershaw; Boris Vannière; Daniel G. Gavin; Neil Roberts; Olivier Blarquez; Rebecca Turner; Basil A. S. Davis; Donna D'Costa; Sally P. Horn; Scott Mooney; Damien Rius; Damien Rius; Elena Marinova; Elena Marinova; G.M. Mckenzie; Valery T. Terwilliger; Valery T. Terwilliger; Mitchell J. Power; Anne-Laure Daniau; Fumitaka Katamura; Colin J. Long; Elin Norström; Sergey K. Krivonogov; John Dodson; Zewdu Eshetu; Lydie M Dupont; Hermann Behling; Daniele Colombaroli; Douglas J. Hallett; Louis Scott; Aurélie Genries; Janelle Stevenson; Donatella Magri; Lisa M. Kennedy; Natasha L. Williams; K. J. Brown; K. J. Brown; Maja Andrič; Florian Thevenon; Scott Brewer; Patricio I. Moreno; Megan K. Walsh; Megan K. Walsh; Yunlin Zhang; Eric A. Colhoun; Christopher Carcaillet; Willy Tinner; T.G. Kassa; Pierre Friedlingstein; Pierre Friedlingstein; Jun Inoue; Patrick Moss; M.P. Black; Hikaru Takahara; T I Harrison-Prentice; Iain Colin Prentice; Iain Colin Prentice; Iain Colin Prentice; Frank H. Neumann; Frank H. Neumann; Patrick J. Bartlein; Naoko Sasaki; Kenji Izumi; Verushka Valsecchi; Verushka Valsecchi; C. Paitre; Geoffrey Hope; Jennifer R. Marlon; Simon Haberle; Guy Robinson; Juliana Atanassova; Sandy P. Harrison; Sandy P. Harrison;handle: 11573/492133 , 1959.13/1062819 , 1885/68592
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo‐ fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote‐sensing observations of month‐by‐month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 326 citations 326 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, Switzerland, France, Germany, Australia, United Kingdom, Germany, Switzerland, Australia, Switzerland, Australia, Australia, Italy, United KingdomPublisher:American Geophysical Union (AGU) Peter Kershaw; Boris Vannière; Daniel G. Gavin; Neil Roberts; Olivier Blarquez; Rebecca Turner; Basil A. S. Davis; Donna D'Costa; Sally P. Horn; Scott Mooney; Damien Rius; Damien Rius; Elena Marinova; Elena Marinova; G.M. Mckenzie; Valery T. Terwilliger; Valery T. Terwilliger; Mitchell J. Power; Anne-Laure Daniau; Fumitaka Katamura; Colin J. Long; Elin Norström; Sergey K. Krivonogov; John Dodson; Zewdu Eshetu; Lydie M Dupont; Hermann Behling; Daniele Colombaroli; Douglas J. Hallett; Louis Scott; Aurélie Genries; Janelle Stevenson; Donatella Magri; Lisa M. Kennedy; Natasha L. Williams; K. J. Brown; K. J. Brown; Maja Andrič; Florian Thevenon; Scott Brewer; Patricio I. Moreno; Megan K. Walsh; Megan K. Walsh; Yunlin Zhang; Eric A. Colhoun; Christopher Carcaillet; Willy Tinner; T.G. Kassa; Pierre Friedlingstein; Pierre Friedlingstein; Jun Inoue; Patrick Moss; M.P. Black; Hikaru Takahara; T I Harrison-Prentice; Iain Colin Prentice; Iain Colin Prentice; Iain Colin Prentice; Frank H. Neumann; Frank H. Neumann; Patrick J. Bartlein; Naoko Sasaki; Kenji Izumi; Verushka Valsecchi; Verushka Valsecchi; C. Paitre; Geoffrey Hope; Jennifer R. Marlon; Simon Haberle; Guy Robinson; Juliana Atanassova; Sandy P. Harrison; Sandy P. Harrison;handle: 11573/492133 , 1959.13/1062819 , 1885/68592
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo‐ fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote‐sensing observations of month‐by‐month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 326 citations 326 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 SwitzerlandPublisher:Wiley Marco Conedera; Daniele Colombaroli; Daniele Colombaroli; Daniele Colombaroli; Cathy Whitlock; Cathy Whitlock; Cathy Whitlock; Willy Tinner; Willy Tinner;pmid: 28574184
AbstractConservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.
Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwitzerlandPublisher:Wiley Marco Conedera; Daniele Colombaroli; Daniele Colombaroli; Daniele Colombaroli; Cathy Whitlock; Cathy Whitlock; Cathy Whitlock; Willy Tinner; Willy Tinner;pmid: 28574184
AbstractConservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.
Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Switzerland, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Long-term dynamics of Med...SNSF| Long-term dynamics of Mediterranean vegetation in response to climatic change and disturbance: combining paleoecological and dynamic modelling approachesBettina Gnaegi; César Morales-Molino; Giorgia Beffa; Willy Tinner; Daniele Colombaroli; Salvatore Pasta; W.O. van der Knaap; Tommaso La Mantia; Jacqueline F. N. van Leeuwen; Petra Kaltenrieder; Paul D. Henne; Paul D. Henne; Elisa Vescovi;handle: 20.500.14243/385014 , 10447/199977
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixe, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, Switzerland, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Long-term dynamics of Med...SNSF| Long-term dynamics of Mediterranean vegetation in response to climatic change and disturbance: combining paleoecological and dynamic modelling approachesBettina Gnaegi; César Morales-Molino; Giorgia Beffa; Willy Tinner; Daniele Colombaroli; Salvatore Pasta; W.O. van der Knaap; Tommaso La Mantia; Jacqueline F. N. van Leeuwen; Petra Kaltenrieder; Paul D. Henne; Paul D. Henne; Elisa Vescovi;handle: 20.500.14243/385014 , 10447/199977
Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixe, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2016 . Peer-reviewedFull-Text: https://boris.unibe.ch/82033/1/Holocene.pdfData sources: Bern Open Repository and Information System (BORIS)Vegetation History and ArchaeobotanyArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00334-016-0569-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Switzerland, FrancePublisher:Wiley Willy Tinner; Mercedes García-Antón; Daniele Colombaroli; César Morales-Molino; César Morales-Molino;Summary Pinus nigra Arn. forests dominated over extensive areas of the Northern Iberian Plateau (Spain) during the Holocene, but a strong decline during the historical period (c. 1300–700 cal. bp) led to the present fragmented populations. This demise has been generally attributed to land‐use changes or climate, but the specific roles of disturbance regimes such as fire variability and grazing on the long‐term are not fully understood yet. We combine multi‐proxy palaeoecological data (fossil pollen, spores, conifer stomata, microscopic and macroscopic charcoal) together with quantitative analyses (ordination and peak detection) from a high‐resolution sedimentary sequence (Tubilla del Lago, 900 m a.s.l.) to assess the causes of pine forests demise. A new microscopic charcoal record from an additional sequence (Espinosa de Cerrato, 885 m a.s.l.) is used to assess burning and pine decline at a more regional (100‐km radius) scale. Pinus nigra forests could cope with drought and fire regime variability (FRI = 110–500 years), with forest recovery taking c. 100–200 years after fires. Only at 1300–1200 cal. bp a long‐lasting irrecoverable demise of P. nigra forests occurred when human‐induced fires together with arable and pastoral farming became widespread in the area. Subsequently, Quercus woodlands expanded in the remnant patchy pinewoods. This vegetation shift was primarily caused by three particularly important fire episodes in less than a century (c. 1300–1200 cal. bp). Synthesis. Pinus nigra forests have shown a millennial resilience to the natural fire regime of the Northern Iberian Plateau that was characterized by relatively frequent small‐moderate fires and rare high‐intensity fires. However, frequent human‐caused crown fires and the onset of intensive farming caused their demise over an extensive area. Ongoing land‐use abandonment in the Iberian mountains could promote the occurrence of high‐intensity, severe fires due to the rapid build‐up of high fuel loads. Forest management could mimic the natural fire regime by periodically reducing fuel loads for a transitional period until natural disturbance variability is fully restored, thus preserving these relict native plant communities.
Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Switzerland, FrancePublisher:Wiley Willy Tinner; Mercedes García-Antón; Daniele Colombaroli; César Morales-Molino; César Morales-Molino;Summary Pinus nigra Arn. forests dominated over extensive areas of the Northern Iberian Plateau (Spain) during the Holocene, but a strong decline during the historical period (c. 1300–700 cal. bp) led to the present fragmented populations. This demise has been generally attributed to land‐use changes or climate, but the specific roles of disturbance regimes such as fire variability and grazing on the long‐term are not fully understood yet. We combine multi‐proxy palaeoecological data (fossil pollen, spores, conifer stomata, microscopic and macroscopic charcoal) together with quantitative analyses (ordination and peak detection) from a high‐resolution sedimentary sequence (Tubilla del Lago, 900 m a.s.l.) to assess the causes of pine forests demise. A new microscopic charcoal record from an additional sequence (Espinosa de Cerrato, 885 m a.s.l.) is used to assess burning and pine decline at a more regional (100‐km radius) scale. Pinus nigra forests could cope with drought and fire regime variability (FRI = 110–500 years), with forest recovery taking c. 100–200 years after fires. Only at 1300–1200 cal. bp a long‐lasting irrecoverable demise of P. nigra forests occurred when human‐induced fires together with arable and pastoral farming became widespread in the area. Subsequently, Quercus woodlands expanded in the remnant patchy pinewoods. This vegetation shift was primarily caused by three particularly important fire episodes in less than a century (c. 1300–1200 cal. bp). Synthesis. Pinus nigra forests have shown a millennial resilience to the natural fire regime of the Northern Iberian Plateau that was characterized by relatively frequent small‐moderate fires and rare high‐intensity fires. However, frequent human‐caused crown fires and the onset of intensive farming caused their demise over an extensive area. Ongoing land‐use abandonment in the Iberian mountains could promote the occurrence of high‐intensity, severe fires due to the rapid build‐up of high fuel loads. Forest management could mimic the natural fire regime by periodically reducing fuel loads for a transitional period until natural disturbance variability is fully restored, thus preserving these relict native plant communities.
Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Proceedings of the National Academy of Sciences Marlon, Jennifer R.; Bartlein, Patrick J.; Gavin, Daniel G.; Long, Colin J.; Anderson, R. Scott; Briles, Christy E.; Brown, Kendrick J.; Colombaroli, Daniele; Hallett, Douglas J.; Power, Mitchell J.; Scharf, Elizabeth A.; Walsh, Megan K.;Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400–1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950–1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest “fire deficit” in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 459 citations 459 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Proceedings of the National Academy of Sciences Marlon, Jennifer R.; Bartlein, Patrick J.; Gavin, Daniel G.; Long, Colin J.; Anderson, R. Scott; Briles, Christy E.; Brown, Kendrick J.; Colombaroli, Daniele; Hallett, Douglas J.; Power, Mitchell J.; Scharf, Elizabeth A.; Walsh, Megan K.;Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400–1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950–1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest “fire deficit” in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 459 citations 459 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefCentral Washington University: ScholarWorksArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1112839109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Vanessa Gelorini; Dirk Verschuren; Immaculate Ssemmanda; Daniele Colombaroli;pmid: 24677504
AbstractRainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Vanessa Gelorini; Dirk Verschuren; Immaculate Ssemmanda; Daniele Colombaroli;pmid: 24677504
AbstractRainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Germany, United Kingdom, Australia, Australia, Australia, United States, Australia, Chile, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.-L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.-J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goñi, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.;Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 583 citations 583 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Germany, United Kingdom, Australia, Australia, Australia, United States, Australia, Chile, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.-L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.-J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goñi, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.;Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 583 citations 583 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, Switzerland, France, Germany, Australia, United Kingdom, Germany, Switzerland, Australia, Switzerland, Australia, Australia, Italy, United KingdomPublisher:American Geophysical Union (AGU) Peter Kershaw; Boris Vannière; Daniel G. Gavin; Neil Roberts; Olivier Blarquez; Rebecca Turner; Basil A. S. Davis; Donna D'Costa; Sally P. Horn; Scott Mooney; Damien Rius; Damien Rius; Elena Marinova; Elena Marinova; G.M. Mckenzie; Valery T. Terwilliger; Valery T. Terwilliger; Mitchell J. Power; Anne-Laure Daniau; Fumitaka Katamura; Colin J. Long; Elin Norström; Sergey K. Krivonogov; John Dodson; Zewdu Eshetu; Lydie M Dupont; Hermann Behling; Daniele Colombaroli; Douglas J. Hallett; Louis Scott; Aurélie Genries; Janelle Stevenson; Donatella Magri; Lisa M. Kennedy; Natasha L. Williams; K. J. Brown; K. J. Brown; Maja Andrič; Florian Thevenon; Scott Brewer; Patricio I. Moreno; Megan K. Walsh; Megan K. Walsh; Yunlin Zhang; Eric A. Colhoun; Christopher Carcaillet; Willy Tinner; T.G. Kassa; Pierre Friedlingstein; Pierre Friedlingstein; Jun Inoue; Patrick Moss; M.P. Black; Hikaru Takahara; T I Harrison-Prentice; Iain Colin Prentice; Iain Colin Prentice; Iain Colin Prentice; Frank H. Neumann; Frank H. Neumann; Patrick J. Bartlein; Naoko Sasaki; Kenji Izumi; Verushka Valsecchi; Verushka Valsecchi; C. Paitre; Geoffrey Hope; Jennifer R. Marlon; Simon Haberle; Guy Robinson; Juliana Atanassova; Sandy P. Harrison; Sandy P. Harrison;handle: 11573/492133 , 1959.13/1062819 , 1885/68592
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo‐ fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote‐sensing observations of month‐by‐month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 326 citations 326 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, Switzerland, France, Germany, Australia, United Kingdom, Germany, Switzerland, Australia, Switzerland, Australia, Australia, Italy, United KingdomPublisher:American Geophysical Union (AGU) Peter Kershaw; Boris Vannière; Daniel G. Gavin; Neil Roberts; Olivier Blarquez; Rebecca Turner; Basil A. S. Davis; Donna D'Costa; Sally P. Horn; Scott Mooney; Damien Rius; Damien Rius; Elena Marinova; Elena Marinova; G.M. Mckenzie; Valery T. Terwilliger; Valery T. Terwilliger; Mitchell J. Power; Anne-Laure Daniau; Fumitaka Katamura; Colin J. Long; Elin Norström; Sergey K. Krivonogov; John Dodson; Zewdu Eshetu; Lydie M Dupont; Hermann Behling; Daniele Colombaroli; Douglas J. Hallett; Louis Scott; Aurélie Genries; Janelle Stevenson; Donatella Magri; Lisa M. Kennedy; Natasha L. Williams; K. J. Brown; K. J. Brown; Maja Andrič; Florian Thevenon; Scott Brewer; Patricio I. Moreno; Megan K. Walsh; Megan K. Walsh; Yunlin Zhang; Eric A. Colhoun; Christopher Carcaillet; Willy Tinner; T.G. Kassa; Pierre Friedlingstein; Pierre Friedlingstein; Jun Inoue; Patrick Moss; M.P. Black; Hikaru Takahara; T I Harrison-Prentice; Iain Colin Prentice; Iain Colin Prentice; Iain Colin Prentice; Frank H. Neumann; Frank H. Neumann; Patrick J. Bartlein; Naoko Sasaki; Kenji Izumi; Verushka Valsecchi; Verushka Valsecchi; C. Paitre; Geoffrey Hope; Jennifer R. Marlon; Simon Haberle; Guy Robinson; Juliana Atanassova; Sandy P. Harrison; Sandy P. Harrison;handle: 11573/492133 , 1959.13/1062819 , 1885/68592
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo‐ fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote‐sensing observations of month‐by‐month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 326 citations 326 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2012 . Peer-reviewedFull-Text: https://boris.unibe.ch/16931/1/gbc1936.pdfData sources: Bern Open Repository and Information System (BORIS)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverArchive de l'Observatoire de Paris (HAL)Article . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/68592Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://insu.hal.science/insu-00750734Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2018Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverGlobal Biogeochemical CyclesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaQueensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2011gb004249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu