- home
- Advanced Search
Filters
Year range
-chevron_right GOSDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Diana Süsser; Andrzej Ceglarz; Hannes Gaschnig; Vassilis Stavrakas; Alexandros Flamos; George Giannakidis; Johan Lilliestam;Abstract As energy models become more and more powerful, they are increasingly used to support energy policymaking. Although modelling has been used for policy advice for many years, there is little knowledge about how computer-based models actually influence policymaking, and to what extent policymakers influence the modelling process. Here, we empirically investigate (i) whether, how and when models influence the policymaking process, and (ii) whether, how and when policymakers influence the design, use and results of energy modelling. We analysed modelling and policy documents and conducted thirty-two interviews with different stakeholder groups in five different European jurisdictions. We show that models are used and have an impact on policymaking, especially by assessing impacts and supporting target setting, and sometimes by exploring policy options to reach these targets. We also show that policymakers influence models and modellers, especially by affecting data and assumptions, as well as the study scope, and by deciding how the modelling results are used. Hence, energy modelling and policymaking influence each other. In their exploratory mode, models can help investigate policy options and ambitious target setting. However, models can also be instrumentalised to justify already decided policies and targets. Our study implies that greater transparency, including open-source code and open data, and transdisciplinary elements in modelling could increase model legitimacy and impact in policymaking.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:EC | SENTINEL, EC | TRIPODEC| SENTINEL ,EC| TRIPODDiana Süsser; Hannes Gaschnig; Andrzej Ceglarz; Vassilis Stavrakas; Alexandros Flamos; Johan Lilliestam;Abstract Energy system models are advancing rapidly. However, it is not clear whether models are becoming better, in the sense that they address the questions that decision-makers need to be answered to make well-informed decisions. Therefore, we investigate the gap between model improvements relevant from the perspective of modellers compared to what users of model results think models should address. Thus, we ask: What are the differences between energy model improvements as perceived by modellers, and the actual needs of users of model results? To answer this question, we conducted a literature review, 32 interviews, and an online survey. Our results show that user needs and ongoing improvements of energy system models align to a large degree so that future models are indeed likely to be better than current models. We also find mismatches between the needs of modellers and users, especially in the modelling of social, behavioural and political aspects, the trade-off between model complexity and understandability, and the ways that model results should be communicated. Our findings suggest that a better understanding of user needs and closer cooperation between modellers and users is imperative to truly improve models and unlock their full potential to support the transition towards climate neutrality in Europe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Funded by:EC | SENTINELEC| SENTINELKleanthis, Nikos; Stavrakas, Vassilis; Schibline, Amanda; Ceglarz, Andrzej; Süsser, Diana; Michas, Serafeim; Flamos, Alexandros;The European Commission (EC)-funded H2020 Sustainable Energy Transitions Laboratory (SENTINEL) project has applied a participatory approach including three steps: i. investigating how to adjust modelling tools based on modelling users' needs and test their applicability in three case studies at three different geographical scales: National (Greece), Regional (Nordic region) and Continental (Europe), ii. engaging experts representing various stakeholder groups to understand the key challenges to reaching climate neutrality and specify the most critical and policy-relevant contextual questions that energy system models should be able to respond to, and iii. involving stakeholders in the model application process to implement further modelling refinements based on their feedback. This report serves as a summary of the SENTINEL stakeholder workshop and captures our discussion and findings tackling the different dimensions of the energy transition in Europe with a focus on Greece. The workshop entitled “Pathways to climate neutrality in Europe with a spotlight on Greece: Challenges, uncertainties, solutions” took place as a physical workshop in Greece on the 30th of June 2022. The SENTINEL researchers presented key modelling results from the Continental and the National case studies and collected feedback on potential further model refinements and improvements required, the usefulness of the modelling insights and how to best disseminate them, as well as the identification of any further research questions that need to be answered by the SENTINEL modelling ensemble. Participants stated a variety of different critical issues and challenges related to the energy transition of the European and Greek energy systems. These insights also meant to further inform the research questions that had been identified in previous stakeholder engagement activities. Given the recent upheaval due to Russia’s invasion of Ukraine and the consequent energy crisis that coincides with our work, these questions could be (re)considered by the SENTINEL consortium to accurately capture current developments in Europe. Finally, discussions and inputs from stakeholders revealed meaningful viewpoints that could be incorporated in the further development of the SENTINEL modelling suite. The authors would like to thank all stakeholders for dedicating their time and providing us with important input during the workshop and all SENTINEL partners for their commitment in presenting their outcomes. The authors would, also, like to acknowledge the support from the European Commission. The content of this report is the sole responsibility of its authors and does not necessary reflect the views of the European Commission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7299670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7299670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:F1000 Research Ltd Funded by:EC | SENTINEL, EC | TRIPODEC| SENTINEL ,EC| TRIPODAuthors: Süsser, Diana; Ceglarz, Andrzej; Stavrakas, Vassilis; Lilliestam, Johan;The coronavirus (COVID-19) pandemic has affected societies and economies around the world, and the scientific community is no exception. Whereas the importance of stakeholder engagement in research has grown quickly the consequences of the pandemic on this has so far not been empirically studied. In this paper, we investigate the effects of the COVID-19 crisis on European energy research, in particular the stakeholder work, during the first wave of the coronavirus in spring and summer 2020. We pose the research questions: (i) How much of a problem are the coronavirus containment measures for stakeholder engagement? (ii) How have researchers coped with the situation, and (iii) How do they evaluate alternative stakeholder activities implemented? We conducted an online survey among European energy research projects with stakeholder engagement between June and August 2020. We found that only one of six engagement activities could be implemented as planned, whereas almost half were cancelled or delayed. The most common coping strategies were changing involvement formats – mainly to webinars or online workshops – or postponement. Whereas respondents are largely satisfied with one-to-one and unidirectional online formats, such as webinars, online interviews, and online surveys, they see interactive group activities as less suitable for online engagement. Most respondents plan to continue using online formats to complement, but not to replace, physical meetings in future research. All long-term effects remain to be seen, but given the postponement of many stakeholder involvement activities, many projects may face problems at later stages of their realisation. These findings suggest that the pandemic may have catalysed a rapid introduction of specific online formats in academic stakeholder interaction processes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.13683.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 50visibility views 50 download downloads 62 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.13683.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2020Publisher:Zenodo Martin, Nicholas; Talens Peiró, Laura; Süsser, Diana; Gaschnig, Hannes; Lilliestam, Johan; Madrid López, Cristina;In line with its commitments to lower carbon emissions under the Paris Agreement and its own 2030 Climate & Energy Framework, the European Union (EU) has committed to increase the share of renewable energy use–around 15% in 2018–to be at least 32% by 2030. Achieving this will require a major reconfiguration of current energy systems in what could be seen as an example of a socio-technical transition or, more specifically, of an ‘energy transition’. The key driver of this transition will be the electrification of heating and mobility functions. However, owing to the intermittent nature of most renewable energy sources (RES), this will need to be accompanied by the increased decentralisation and digitalisation of electricity networks. Existing energy system modelling softwares can simulate the dynamics of many of these processes. Nevertheless, they generally do not adequately capture the social and ecological aspects of the technologies that will drive this transition. Accordingly, the report aims to identify ways that future modelling applications–such as the ENVIRO and QTDIAN modules to be developed within the current project–can be used to address this gap and what information, theories, frameworks and methodologies exist that can guide such processes. Following a brief introduction to the key concepts involved, Section 2 provides a summary of the current energy system at the global and EU scale, followed by a detailed investigation into the technologies most relevant to the transition towards the greater use of renewable energy. This includes all important energy supply, demand and storage technologies. Recognising that achieving a just and sustainable energy transition will also require changes within society itself, a selection of six key social trends relating to the energy transition are also discussed. Collectively, these trends suggest that addressing issues of social acceptance, democracy and justice are likely to greatly improve the success of transition processes. Section 3 outlines a number of frameworks and theories that can be used to conceptualise the social processes and processes of technological emergence likely to occur within broader energy transition processes. Firstly, the four main theoretical foundations for visualising transitions are identified as the Multi-Level Perspective (MLP), the Technological Innovation System (TIS), Strategic Niche Management (SNM) and Transition Management (TM). All four–and the MLP in particular–can be used to understand how structural changes occur in energy systems and how to guide sustainable energy transition processes. Two further approaches for quantifying the rates of technological progress and market impact for burgeoning technologies are also discussed. Together, it is hoped that this information can be used to conceptualise and predict the myriad potential transition pathways that are to be developed using the ENVIRO and QTDIAN modules. Lastly, section 4 presents a summary of six existing frameworks and approaches that have found use in the quantitative modelling of energy transitions. The first of these–the use of integrated assessment models (IAMs)–involves the integration of multiple existing quantitative models, is already widely employed to simulate transition scenarios at larger scales and is perhaps the most relevant to the current project. The remaining five model categories are a group of more abstract frameworks and approaches that attempt to model complex systems, behaviours and dynamics, often at finer levels of detail. This includes agent-based models (ABMs)–the most commonly used to date–as well as the broadly classified group of complex systems models, evolutionary economics models, socio-ecological systems models and system dynamics models. Collectively, the findings of the report act as the foundation for the development of the ENVIRO and QTDIAN modules that will allow social and ecological factors and impacts to be integrated into the energy system modelling platform of the SENTINEL project. It also serves to open doors to the continued integration of social and environmental factors into future energy system models by demonstrating the ways in which societal and technological trends can be integrated into energy system modelling projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4917182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 132visibility views 132 download downloads 103 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4917182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Adela Marian; Diana Süsser; Rainer Quitzow; Joschka Jahn; Laima Eicke; German Bersalli; Stephen Williams; Bing Xue; Sapan Thapar; Flavio Lira; Silvia Weko; Johan Lilliestam;In this article, we review the main impacts of the COVID-19 pandemic on the global energy sector and evaluate the implications of related policy responses on prospects for a transition to a climate-friendly energy system. In doing so, we differentiate between different types of countries and different dimensions of energy supply. Firstly, we assess the impacts on leaders and laggards in the transformation of the power sector, in terms of renewable power deployment and the phase-out of coal-fired power generation. Secondly, we consider impacts of the crisis on major exporters of oil and gas resources, focusing on a selection of G20 countries. We find that the impact of the COVID-19 crisis and related policy responses vary across different types of countries but also within large countries, such as the US and China. We conclude that the COVID-19 crisis deepens the gulf between leaders and laggards of the global energy transition and will exacerbate existing imbalances in an uneven energy transition landscape. This threatens the achievement of international climate targets and points to the need for concerted international action aimed at the phase-out of fossil energy resources.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2022Publisher:Zenodo Funded by:EC | SENTINEL, WT, EC | PARIS REINFORCEEC| SENTINEL ,WT ,EC| PARIS REINFORCEKleanthis, Nikos; Schibline, Amanda; Stavrakas, Vassilis; Ceglarz, Andrzej; Flamos, Alexandros; Michas, Serafeim; Süsser, Diana; Psyrri, Alexandra; Thellufsen, Jakob Zinck; Chatterjee, Souran; Sgarlato, Raffaele; Savelsberg, Cornelis; Mayer, Jakob;This deliverable focuses on the final step of the overall SENTINEL stakeholder engagement strategy and aims to (a). present stakeholder feedback on the usefulness of the SENTINEL modelling results for the case studies regarding the improvement of stakeholders’ decision making as well as recommendations for improved integration of model components, and (b). produce a final set of results and lessons learnt after further model application within the case study framework. To meet these objectives, we applied a four-tier participatory multi-method approach consisting of stakeholder interactions in 10 events (workshops, conferences, focus groups, bilateral meetings, etc.), in which SENTINEL modelling teams and more than 90 stakeholders participated. One important lesson learnt from our work is that modellers need to put more effort into involving non-technical audiences in the energy modelling process by making sophisticated outputs more understandable to them. This can further enable the mainstreaming of energy system modelling, as stakeholders with no background in this area can also provide feedback on the relevance of modelling and their needs. We also find out that stakeholders with technical background pay close attention to how various models are integrated and how modelling outcomes compare to those of other models when using similar scenario specifications and assumptions. We observe that further research and modelling studies should aim at better capturing the effects of fossil-fuel price uncertainty and eliciting strategic choices about a quicker reduction in the reliance on fossil fuels, particularly Russian oil and gas. In addition, stakeholders are interested in learning how citizen-led energy transition pathways can be realised and consider that people-powered storylines should be further disseminated in energy scenario specifications. Finally, we find out that behavioural change is a critical challenge towards achieving the climate neutral goal. The authors would like to acknowledge the support from the EC. The authors would like to thank SENTINEL colleagues for their contributions to specific sections relevant to their models and modelling themes. The authors would also like to thank the stakeholders that participated to the stakeholder workshop in Athens, the online deep-dive sessions, the online SENTINEL final event, and other bilateral event/meetings. The content of this report is the sole responsibility of its authors and does not necessary reflect the views of the EC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7417831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 62visibility views 62 download downloads 64 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7417831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Beate M. W. Ratter; Martin Döring; Diana Süsser;Abstract Transition towards a renewable energy supply initiates a physical (re)shaping of places and a social transformation of communities into renewable energy communities. Although socio-cultural challenges of energy transition have been recognised ( Field, 2015 , IPCC, 2011 , Teske et al., 2015 ), understandings about socio-geographic places of energy transition and their underlying social processes and structures are insufficiently studied and often remain underestimated. To close this gap, we theoretically and empirically analysed the multifaceted interplay between place, local entrepreneurship and ‘community renewable energy’. Our study is based on an analysis of regional documents and policy reports, and on qualitative interviews undertaken with inhabitants in the case-study municipality of Reusenkoge (Germany). Our findings reveal two important aspects: Firstly, people's individual and shared place meanings which materialised in social, physical, historical and climate-related place-attachments and meanings of contested and innovative place are important ingredients bearing an impact on processes of adopting or rejecting renewables. Secondly, differentiated characteristics of entrepreneurs, namely grounded, collaborative, innovative, change-making, economic, communicating, networking and political aspects, appeared to be relevant for the acceptance and support in community-based renewable energy projects. Our findings reveal that energy policies, funding schemes and administrative structures should recognise local socio-geographic important elements in the context of a sustained and decentralised energy transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Alexandra Krumm; Diana Süsser; Philipp Blechinger;Abstract Computer-based models provide decision-makers with techno-economic insights into transition pathways for decarbonising energy systems. Such models mainly focus on techno-economic aspects and do not adequately represent the social aspects of the energy transition, although there is broad consensus that these non-technical factors are important drivers and constraints. To map the current integration and identify perspectives for future research, we ask: Which model types are particularly good at integrating social aspects? What social aspects are represented in energy models? How are these social aspects integrated? We analysed publications that apply these energy models to investigate which and how models integrate social aspects within three main modelling steps: (i) storyline, scenario, and input parameter, (ii) optimisation/simulation process and (iii) model output discussion. Results show that social aspects are mainly integrated through exogenous assumptions and output discussions. We also identify models that go beyond technical potential and pure cost optimisation/simulation. All model types integrate behaviour and lifestyle; some address public acceptance, but not transformation dynamics. Only agent-based models integrate heterogeneity of actors and public ownership. We conclude that a better representation of social aspects in energy models is needed, and that there is a high potential to improve this by combining different model types and conducting interdisciplinary research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Diana Süsser; Andrzej Ceglarz; Hannes Gaschnig; Vassilis Stavrakas; Alexandros Flamos; George Giannakidis; Johan Lilliestam;Abstract As energy models become more and more powerful, they are increasingly used to support energy policymaking. Although modelling has been used for policy advice for many years, there is little knowledge about how computer-based models actually influence policymaking, and to what extent policymakers influence the modelling process. Here, we empirically investigate (i) whether, how and when models influence the policymaking process, and (ii) whether, how and when policymakers influence the design, use and results of energy modelling. We analysed modelling and policy documents and conducted thirty-two interviews with different stakeholder groups in five different European jurisdictions. We show that models are used and have an impact on policymaking, especially by assessing impacts and supporting target setting, and sometimes by exploring policy options to reach these targets. We also show that policymakers influence models and modellers, especially by affecting data and assumptions, as well as the study scope, and by deciding how the modelling results are used. Hence, energy modelling and policymaking influence each other. In their exploratory mode, models can help investigate policy options and ambitious target setting. However, models can also be instrumentalised to justify already decided policies and targets. Our study implies that greater transparency, including open-source code and open data, and transdisciplinary elements in modelling could increase model legitimacy and impact in policymaking.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:EC | SENTINEL, EC | TRIPODEC| SENTINEL ,EC| TRIPODDiana Süsser; Hannes Gaschnig; Andrzej Ceglarz; Vassilis Stavrakas; Alexandros Flamos; Johan Lilliestam;Abstract Energy system models are advancing rapidly. However, it is not clear whether models are becoming better, in the sense that they address the questions that decision-makers need to be answered to make well-informed decisions. Therefore, we investigate the gap between model improvements relevant from the perspective of modellers compared to what users of model results think models should address. Thus, we ask: What are the differences between energy model improvements as perceived by modellers, and the actual needs of users of model results? To answer this question, we conducted a literature review, 32 interviews, and an online survey. Our results show that user needs and ongoing improvements of energy system models align to a large degree so that future models are indeed likely to be better than current models. We also find mismatches between the needs of modellers and users, especially in the modelling of social, behavioural and political aspects, the trade-off between model complexity and understandability, and the ways that model results should be communicated. Our findings suggest that a better understanding of user needs and closer cooperation between modellers and users is imperative to truly improve models and unlock their full potential to support the transition towards climate neutrality in Europe.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Funded by:EC | SENTINELEC| SENTINELKleanthis, Nikos; Stavrakas, Vassilis; Schibline, Amanda; Ceglarz, Andrzej; Süsser, Diana; Michas, Serafeim; Flamos, Alexandros;The European Commission (EC)-funded H2020 Sustainable Energy Transitions Laboratory (SENTINEL) project has applied a participatory approach including three steps: i. investigating how to adjust modelling tools based on modelling users' needs and test their applicability in three case studies at three different geographical scales: National (Greece), Regional (Nordic region) and Continental (Europe), ii. engaging experts representing various stakeholder groups to understand the key challenges to reaching climate neutrality and specify the most critical and policy-relevant contextual questions that energy system models should be able to respond to, and iii. involving stakeholders in the model application process to implement further modelling refinements based on their feedback. This report serves as a summary of the SENTINEL stakeholder workshop and captures our discussion and findings tackling the different dimensions of the energy transition in Europe with a focus on Greece. The workshop entitled “Pathways to climate neutrality in Europe with a spotlight on Greece: Challenges, uncertainties, solutions” took place as a physical workshop in Greece on the 30th of June 2022. The SENTINEL researchers presented key modelling results from the Continental and the National case studies and collected feedback on potential further model refinements and improvements required, the usefulness of the modelling insights and how to best disseminate them, as well as the identification of any further research questions that need to be answered by the SENTINEL modelling ensemble. Participants stated a variety of different critical issues and challenges related to the energy transition of the European and Greek energy systems. These insights also meant to further inform the research questions that had been identified in previous stakeholder engagement activities. Given the recent upheaval due to Russia’s invasion of Ukraine and the consequent energy crisis that coincides with our work, these questions could be (re)considered by the SENTINEL consortium to accurately capture current developments in Europe. Finally, discussions and inputs from stakeholders revealed meaningful viewpoints that could be incorporated in the further development of the SENTINEL modelling suite. The authors would like to thank all stakeholders for dedicating their time and providing us with important input during the workshop and all SENTINEL partners for their commitment in presenting their outcomes. The authors would, also, like to acknowledge the support from the European Commission. The content of this report is the sole responsibility of its authors and does not necessary reflect the views of the European Commission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7299670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7299670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:F1000 Research Ltd Funded by:EC | SENTINEL, EC | TRIPODEC| SENTINEL ,EC| TRIPODAuthors: Süsser, Diana; Ceglarz, Andrzej; Stavrakas, Vassilis; Lilliestam, Johan;The coronavirus (COVID-19) pandemic has affected societies and economies around the world, and the scientific community is no exception. Whereas the importance of stakeholder engagement in research has grown quickly the consequences of the pandemic on this has so far not been empirically studied. In this paper, we investigate the effects of the COVID-19 crisis on European energy research, in particular the stakeholder work, during the first wave of the coronavirus in spring and summer 2020. We pose the research questions: (i) How much of a problem are the coronavirus containment measures for stakeholder engagement? (ii) How have researchers coped with the situation, and (iii) How do they evaluate alternative stakeholder activities implemented? We conducted an online survey among European energy research projects with stakeholder engagement between June and August 2020. We found that only one of six engagement activities could be implemented as planned, whereas almost half were cancelled or delayed. The most common coping strategies were changing involvement formats – mainly to webinars or online workshops – or postponement. Whereas respondents are largely satisfied with one-to-one and unidirectional online formats, such as webinars, online interviews, and online surveys, they see interactive group activities as less suitable for online engagement. Most respondents plan to continue using online formats to complement, but not to replace, physical meetings in future research. All long-term effects remain to be seen, but given the postponement of many stakeholder involvement activities, many projects may face problems at later stages of their realisation. These findings suggest that the pandemic may have catalysed a rapid introduction of specific online formats in academic stakeholder interaction processes.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.13683.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 50visibility views 50 download downloads 62 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.12688/openr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.13683.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2020Publisher:Zenodo Martin, Nicholas; Talens Peiró, Laura; Süsser, Diana; Gaschnig, Hannes; Lilliestam, Johan; Madrid López, Cristina;In line with its commitments to lower carbon emissions under the Paris Agreement and its own 2030 Climate & Energy Framework, the European Union (EU) has committed to increase the share of renewable energy use–around 15% in 2018–to be at least 32% by 2030. Achieving this will require a major reconfiguration of current energy systems in what could be seen as an example of a socio-technical transition or, more specifically, of an ‘energy transition’. The key driver of this transition will be the electrification of heating and mobility functions. However, owing to the intermittent nature of most renewable energy sources (RES), this will need to be accompanied by the increased decentralisation and digitalisation of electricity networks. Existing energy system modelling softwares can simulate the dynamics of many of these processes. Nevertheless, they generally do not adequately capture the social and ecological aspects of the technologies that will drive this transition. Accordingly, the report aims to identify ways that future modelling applications–such as the ENVIRO and QTDIAN modules to be developed within the current project–can be used to address this gap and what information, theories, frameworks and methodologies exist that can guide such processes. Following a brief introduction to the key concepts involved, Section 2 provides a summary of the current energy system at the global and EU scale, followed by a detailed investigation into the technologies most relevant to the transition towards the greater use of renewable energy. This includes all important energy supply, demand and storage technologies. Recognising that achieving a just and sustainable energy transition will also require changes within society itself, a selection of six key social trends relating to the energy transition are also discussed. Collectively, these trends suggest that addressing issues of social acceptance, democracy and justice are likely to greatly improve the success of transition processes. Section 3 outlines a number of frameworks and theories that can be used to conceptualise the social processes and processes of technological emergence likely to occur within broader energy transition processes. Firstly, the four main theoretical foundations for visualising transitions are identified as the Multi-Level Perspective (MLP), the Technological Innovation System (TIS), Strategic Niche Management (SNM) and Transition Management (TM). All four–and the MLP in particular–can be used to understand how structural changes occur in energy systems and how to guide sustainable energy transition processes. Two further approaches for quantifying the rates of technological progress and market impact for burgeoning technologies are also discussed. Together, it is hoped that this information can be used to conceptualise and predict the myriad potential transition pathways that are to be developed using the ENVIRO and QTDIAN modules. Lastly, section 4 presents a summary of six existing frameworks and approaches that have found use in the quantitative modelling of energy transitions. The first of these–the use of integrated assessment models (IAMs)–involves the integration of multiple existing quantitative models, is already widely employed to simulate transition scenarios at larger scales and is perhaps the most relevant to the current project. The remaining five model categories are a group of more abstract frameworks and approaches that attempt to model complex systems, behaviours and dynamics, often at finer levels of detail. This includes agent-based models (ABMs)–the most commonly used to date–as well as the broadly classified group of complex systems models, evolutionary economics models, socio-ecological systems models and system dynamics models. Collectively, the findings of the report act as the foundation for the development of the ENVIRO and QTDIAN modules that will allow social and ecological factors and impacts to be integrated into the energy system modelling platform of the SENTINEL project. It also serves to open doors to the continued integration of social and environmental factors into future energy system models by demonstrating the ways in which societal and technological trends can be integrated into energy system modelling projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4917182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 132visibility views 132 download downloads 103 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4917182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Adela Marian; Diana Süsser; Rainer Quitzow; Joschka Jahn; Laima Eicke; German Bersalli; Stephen Williams; Bing Xue; Sapan Thapar; Flavio Lira; Silvia Weko; Johan Lilliestam;In this article, we review the main impacts of the COVID-19 pandemic on the global energy sector and evaluate the implications of related policy responses on prospects for a transition to a climate-friendly energy system. In doing so, we differentiate between different types of countries and different dimensions of energy supply. Firstly, we assess the impacts on leaders and laggards in the transformation of the power sector, in terms of renewable power deployment and the phase-out of coal-fired power generation. Secondly, we consider impacts of the crisis on major exporters of oil and gas resources, focusing on a selection of G20 countries. We find that the impact of the COVID-19 crisis and related policy responses vary across different types of countries but also within large countries, such as the US and China. We conclude that the COVID-19 crisis deepens the gulf between leaders and laggards of the global energy transition and will exacerbate existing imbalances in an uneven energy transition landscape. This threatens the achievement of international climate targets and points to the need for concerted international action aimed at the phase-out of fossil energy resources.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.101981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2022Publisher:Zenodo Funded by:EC | SENTINEL, WT, EC | PARIS REINFORCEEC| SENTINEL ,WT ,EC| PARIS REINFORCEKleanthis, Nikos; Schibline, Amanda; Stavrakas, Vassilis; Ceglarz, Andrzej; Flamos, Alexandros; Michas, Serafeim; Süsser, Diana; Psyrri, Alexandra; Thellufsen, Jakob Zinck; Chatterjee, Souran; Sgarlato, Raffaele; Savelsberg, Cornelis; Mayer, Jakob;This deliverable focuses on the final step of the overall SENTINEL stakeholder engagement strategy and aims to (a). present stakeholder feedback on the usefulness of the SENTINEL modelling results for the case studies regarding the improvement of stakeholders’ decision making as well as recommendations for improved integration of model components, and (b). produce a final set of results and lessons learnt after further model application within the case study framework. To meet these objectives, we applied a four-tier participatory multi-method approach consisting of stakeholder interactions in 10 events (workshops, conferences, focus groups, bilateral meetings, etc.), in which SENTINEL modelling teams and more than 90 stakeholders participated. One important lesson learnt from our work is that modellers need to put more effort into involving non-technical audiences in the energy modelling process by making sophisticated outputs more understandable to them. This can further enable the mainstreaming of energy system modelling, as stakeholders with no background in this area can also provide feedback on the relevance of modelling and their needs. We also find out that stakeholders with technical background pay close attention to how various models are integrated and how modelling outcomes compare to those of other models when using similar scenario specifications and assumptions. We observe that further research and modelling studies should aim at better capturing the effects of fossil-fuel price uncertainty and eliciting strategic choices about a quicker reduction in the reliance on fossil fuels, particularly Russian oil and gas. In addition, stakeholders are interested in learning how citizen-led energy transition pathways can be realised and consider that people-powered storylines should be further disseminated in energy scenario specifications. Finally, we find out that behavioural change is a critical challenge towards achieving the climate neutral goal. The authors would like to acknowledge the support from the EC. The authors would like to thank SENTINEL colleagues for their contributions to specific sections relevant to their models and modelling themes. The authors would also like to thank the stakeholders that participated to the stakeholder workshop in Athens, the online deep-dive sessions, the online SENTINEL final event, and other bilateral event/meetings. The content of this report is the sole responsibility of its authors and does not necessary reflect the views of the EC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7417831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 62visibility views 62 download downloads 64 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7417831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: S��sser, Diana; al Rakouki, Housam; Lilliestam, Johan;QTDIAN - Quantification of Technological DIffusion and sociAl constraiNts - is a toolbox of qualitative and quantitative descriptions of socio-technical and political aspects of the energy transition that influence the overall potential, the rate of energy-related technology and service diffusion and the design of the future energy system. The output of QTIDIAN is empirically founded datasets of social and political drivers and barriers of the transition, both in the form of raw data describing past and current developments and manipulated to constitute consistent quantifications of the storylines. Here you can download the data for six QTDIAN themes: Socially feasible scaling of energy technologies Policy preferences & dynamics Barriers to infrastructural development (wind energy, grid development) Citizen energy Private energy demand Further information on the QTDIAN modelling toolbox and the data can be found in the SENTINEL Deliverable 2.3 and Deliverable 2.4: S��sser, D., al Rakouki, H., & Lilliestam, J.(2021). The QTDIAN modelling toolbox���Quantification of social drivers and constraints of the diffusion of energy technologies. Deliverable 2.3. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS). S��sser, D., Pickering, B., Chatterjee, S., Oreggioni, G., Stavrakas, V., & Lilliestam, J.(2021). Integration of socio-technological transition constraints into energy demand and systems models. Deliverable 2.5. Sustainable Energy Transitions Laboratory (SENTINEL) project. Potsdam: Institute for Advanced Sustainability Studies (IASS).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 252visibility views 252 download downloads 85 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5834010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Beate M. W. Ratter; Martin Döring; Diana Süsser;Abstract Transition towards a renewable energy supply initiates a physical (re)shaping of places and a social transformation of communities into renewable energy communities. Although socio-cultural challenges of energy transition have been recognised ( Field, 2015 , IPCC, 2011 , Teske et al., 2015 ), understandings about socio-geographic places of energy transition and their underlying social processes and structures are insufficiently studied and often remain underestimated. To close this gap, we theoretically and empirically analysed the multifaceted interplay between place, local entrepreneurship and ‘community renewable energy’. Our study is based on an analysis of regional documents and policy reports, and on qualitative interviews undertaken with inhabitants in the case-study municipality of Reusenkoge (Germany). Our findings reveal two important aspects: Firstly, people's individual and shared place meanings which materialised in social, physical, historical and climate-related place-attachments and meanings of contested and innovative place are important ingredients bearing an impact on processes of adopting or rejecting renewables. Secondly, differentiated characteristics of entrepreneurs, namely grounded, collaborative, innovative, change-making, economic, communicating, networking and political aspects, appeared to be relevant for the acceptance and support in community-based renewable energy projects. Our findings reveal that energy policies, funding schemes and administrative structures should recognise local socio-geographic important elements in the context of a sustained and decentralised energy transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Alexandra Krumm; Diana Süsser; Philipp Blechinger;Abstract Computer-based models provide decision-makers with techno-economic insights into transition pathways for decarbonising energy systems. Such models mainly focus on techno-economic aspects and do not adequately represent the social aspects of the energy transition, although there is broad consensus that these non-technical factors are important drivers and constraints. To map the current integration and identify perspectives for future research, we ask: Which model types are particularly good at integrating social aspects? What social aspects are represented in energy models? How are these social aspects integrated? We analysed publications that apply these energy models to investigate which and how models integrate social aspects within three main modelling steps: (i) storyline, scenario, and input parameter, (ii) optimisation/simulation process and (iii) model output discussion. Results show that social aspects are mainly integrated through exogenous assumptions and output discussions. We also identify models that go beyond technical potential and pure cost optimisation/simulation. All model types integrate behaviour and lifestyle; some address public acceptance, but not transformation dynamics. Only agent-based models integrate heterogeneity of actors and public ownership. We conclude that a better representation of social aspects in energy models is needed, and that there is a high potential to improve this by combining different model types and conducting interdisciplinary research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu