- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Wiley Authors: Christopher M. Free; Sean C. Anderson; Elizabeth A. Hellmers; Barbara A. Muhling; +10 AuthorsChristopher M. Free; Sean C. Anderson; Elizabeth A. Hellmers; Barbara A. Muhling; Michael O. Navarro; Kate Richerson; Lauren A. Rogers; William H. Satterthwaite; Andrew R. Thompson; Jenn M. Burt; Steven D. Gaines; Kristin N. Marshall; J. Wilson White; Lyall F. Bellquist;doi: 10.1111/faf.12753
handle: 11122/13216
AbstractMarine heatwaves are increasingly affecting marine ecosystems, with cascading impacts on coastal economies, communities, and food systems. Studies of heatwaves provide crucial insights into potential ecosystem shifts under future climate change and put fisheries social‐ecological systems through “stress tests” that expose both vulnerabilities and resilience. The 2014–16 Northeast Pacific heatwave was the strongest and longest marine heatwave on record and resulted in profound ecological changes that impacted fisheries, fisheries management, and human livelihoods. Here, we synthesize the impacts of the 2014–2016 marine heatwave on US and Canada West Coast fisheries and extract key lessons for preparing global fisheries science, management, and industries for the future. We set the stage with a brief review of the impacts of the heatwave on marine ecosystems and the first systematic analysis of the economic impacts of these changes on commercial and recreational fisheries. We then examine ten key case studies that provide instructive examples of the complex and surprising challenges that heatwaves pose to fisheries social‐ecological systems. These reveal important insights into improving the resilience of monitoring and management and increasing adaptive capacity to future stressors. Key recommendations include: (1) expanding monitoring to enhance mechanistic understanding, provide early warning signals, and improve predictions of impacts; (2) increasing the flexibility, adaptiveness, and inclusiveness of management where possible; (3) using simulation testing to help guide management decisions; and (4) enhancing the adaptive capacity of fishing communities by promoting engagement, flexibility, experimentation, and failsafes. These advancements are important as global fisheries prepare for a changing ocean.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/2m75d0mkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/2m75d0mkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United StatesPublisher:Springer Science and Business Media LLC Eric J. Ward; Dawn P. Noren; Steven J. Jeffries; Brian J. Burke; Andrew O. Shelton; Brandon E. Chasco; Brandon E. Chasco; Austen C. Thomas; Michael J. Ford; Alejandro Acevedo-Gutiérrez; Craig O. Matkin; M. Bradley Hanson; Isaac C. Kaplan; Kristin N. Marshall; Jonathan J. Scordino;AbstractMany marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (Orcinus orca) on Chinook salmon (Oncorhynchus tshawytscha) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (Phoca vitulina) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey.
ScholarsArchive@OSU arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-14984-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ScholarsArchive@OSU arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-14984-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Wiley Authors: Christopher M. Free; Sean C. Anderson; Elizabeth A. Hellmers; Barbara A. Muhling; +10 AuthorsChristopher M. Free; Sean C. Anderson; Elizabeth A. Hellmers; Barbara A. Muhling; Michael O. Navarro; Kate Richerson; Lauren A. Rogers; William H. Satterthwaite; Andrew R. Thompson; Jenn M. Burt; Steven D. Gaines; Kristin N. Marshall; J. Wilson White; Lyall F. Bellquist;doi: 10.1111/faf.12753
handle: 11122/13216
AbstractMarine heatwaves are increasingly affecting marine ecosystems, with cascading impacts on coastal economies, communities, and food systems. Studies of heatwaves provide crucial insights into potential ecosystem shifts under future climate change and put fisheries social‐ecological systems through “stress tests” that expose both vulnerabilities and resilience. The 2014–16 Northeast Pacific heatwave was the strongest and longest marine heatwave on record and resulted in profound ecological changes that impacted fisheries, fisheries management, and human livelihoods. Here, we synthesize the impacts of the 2014–2016 marine heatwave on US and Canada West Coast fisheries and extract key lessons for preparing global fisheries science, management, and industries for the future. We set the stage with a brief review of the impacts of the heatwave on marine ecosystems and the first systematic analysis of the economic impacts of these changes on commercial and recreational fisheries. We then examine ten key case studies that provide instructive examples of the complex and surprising challenges that heatwaves pose to fisheries social‐ecological systems. These reveal important insights into improving the resilience of monitoring and management and increasing adaptive capacity to future stressors. Key recommendations include: (1) expanding monitoring to enhance mechanistic understanding, provide early warning signals, and improve predictions of impacts; (2) increasing the flexibility, adaptiveness, and inclusiveness of management where possible; (3) using simulation testing to help guide management decisions; and (4) enhancing the adaptive capacity of fishing communities by promoting engagement, flexibility, experimentation, and failsafes. These advancements are important as global fisheries prepare for a changing ocean.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/2m75d0mkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/2m75d0mkData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United StatesPublisher:Springer Science and Business Media LLC Eric J. Ward; Dawn P. Noren; Steven J. Jeffries; Brian J. Burke; Andrew O. Shelton; Brandon E. Chasco; Brandon E. Chasco; Austen C. Thomas; Michael J. Ford; Alejandro Acevedo-Gutiérrez; Craig O. Matkin; M. Bradley Hanson; Isaac C. Kaplan; Kristin N. Marshall; Jonathan J. Scordino;AbstractMany marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (Orcinus orca) on Chinook salmon (Oncorhynchus tshawytscha) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (Phoca vitulina) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey.
ScholarsArchive@OSU arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-14984-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ScholarsArchive@OSU arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-14984-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu