- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Pudong Ge; Xiaobo Dou; Xiangjun Quan; Qinran Hu; Wanxing Sheng; Zaijun Wu; Wei Gu;This paper proposes an extended-state-observer-based distributed robust secondary voltage and frequency control for an autonomous microgrid (MG) with inverter-based distributed generators (DGs) considering the uncertainties from models and measurement noise. The MG is considered as a multi-agent system where each DG is defined as an agent and its controller only requires its own information and the information of its neighbors, but each DG obtains noisy measurements of the states of itself and its neighbors easily due to stochastic noise. Therefore, in this paper, an extended state observer is employed to estimate the accurate state information of each DG, which is significantly influenced by measurement noise. Furthermore, the distributed controllers based on a fast terminal sliding mode surface and an adaptive super-twisting algorithm are designed to track the voltage reference and to fasten the convergence rate against disturbances and uncertainties caused by parameter perturbation. Moreover, the distributed frequency controllers are also designed to restore the frequency and to guarantee the accurate active power sharing without power information of DGs. Finally, the effectiveness of the propose control strategy is illustrated by the simulation of an autonomous MG in MATLAB/Simulink.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2888562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2888562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Elsevier BV Funded by:UKRI | Technology Transformation...UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsAuthors: Pudong Ge; Fei Teng; Charalambos Konstantinou; Shiyan Hu;handle: 10044/1/99156 , 10754/671004
This paper proposes a cyber-physical cooperative mitigation framework to enhance power systems resilience under extreme events, e.g., earthquakes and hurricanes. Extreme events can simultaneously damage the physical-layer electric power infrastructure and the cyber-layer communication facilities. Microgrid (MG) has been widely recognised as an effective physical-layer response to such events, however, the mitigation strategy in the cyber lay is yet to be fully investigated. Therefore, this paper proposes a resilience-oriented centralised-to-decentralised framework to maintain the power supply of critical loads such as hospitals, data centers, etc., under extreme events. For the resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency regional communication when centralised base station being compromised. Owing to the limited reliable bandwidth that reserved as a backup, the inevitable delays are dynamically minimised and used to guide the design of a discrete-time distributed control algorithm to maintain post-event power supply. The effectiveness of the cooperative cyber-physical mitigation framework is demonstrated through extensive simulations in MATLAB/Simulink.
e-Prints Soton arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/99156Data sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/99156Data sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2021 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Siemens-EPSRC: Blockchain..., UKRI | JPI Urban Europe/NSFC: So..., UKRI | Technology Transformation...UKRI| Siemens-EPSRC: Blockchain-enabled cloud-edge coordination for demand side manangement ,UKRI| JPI Urban Europe/NSFC: Socio-Techno-Economic Pathways for sustainable Urban energy develoPment ,UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsAuthors: Pudong Ge; Boli Chen; Fei Teng;Networked microgrids with high penetration of distributed generators have ubiquitous remote information exchange, which may be exposed to various cyber security threats. This paper, for the first time, addresses a consensus problem in terms of frequency synchronisation in networked microgrids subject to multi-layer denial of service (DoS) attacks, which could simultaneously affect communication, measurement and control actuation channels. A unified notion of Persistency-of-Data-Flow (PoDF) is proposed to characterise the data unavailability in different information network links, and further quantifies the multi-layer DoS effects on the hierarchical system. With PoDF, we provide a sufficient condition of the DoS attacks under which the consensus can be preserved with the proposed edge-based self-triggered distributed control framework. In addition, to mitigate the conservativeness of offline design against the worst-case attack across all agents, an online self-adaptive scheme of the control parameters is developed to fully utilise the latest available information of all data transmission channels. Finally, the effectiveness of the proposed cyber-resilient self-triggered distributed control is verified by representative case studies. accepted by IEEE Trans. on Smart Grid
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3229486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3229486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | JPI Urban Europe/NSFC: So..., UKRI | Technology Transformation...UKRI| JPI Urban Europe/NSFC: Socio-Techno-Economic Pathways for sustainable Urban energy develoPment ,UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsAuthors: Pudong Ge; Yue Zhu; Tim C. Green; Fei Teng;handle: 10044/1/88341
This paper proposes a distributed secondary voltage control method based on extended state Kalman-Bucy filter (ESKBF) and fast terminal sliding mode (FTSM) control for the resilient operation of an islanded microgrid (MG) with inverter-based distributed generations (DGs). To tackle the co-existence of multiple uncertainties, a unified modelling framework is proposed to represent the set of different types of disturbances, including parameter perturbation, measurement noise, and immeasurably external variables, by an extended state method. Kalman-Bucy filter is then applied to accurately estimate the state information of the extended DG model. In addition, based on the accurate estimation, a fast terminal sliding mode (FTSM) surface with terminal attractors is designed to maintain the system stability and accelerate the convergence of consensus tracking, which significantly improves the performance of secondary voltage control under both normal and plug-and-play operation. Finally, case studies are conducted in both MATLAB/Simulink and an experimental testbed to demonstrate the effectiveness of the proposed method. accepted by IEEE Transactions on Power Systems
IEEE Transactions on... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryIEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryIEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Italy, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ioannis Zografopoulos; Ankur Srivastava; Charalambos Konstantinou; Junbo Zhao; Amir Abiri Jahromi; Astha Chawla; Bang Nguyen; Bu Siqi; Chendan Li; Fei Teng; Goli Preetham; Juan Ospina; Mohammad Asim Aftab; Mohammadreza Arani; Ömer Sen; Panayiotis Moutis; Pudong Ge; Qinglai Guo; Subham Sahoo; Subhash Lakshminarayana; Tuyen Vu; Zhaoyuan Wang;handle: 11567/1237715
This paper summarizes the technical endeavors undertaken by the Task Force (TF) on Cyber-Physical Interdependence for Power System Operation and Control. The TF was established to investigate the cyber-physical interdependence of critical power system elements and their influence on the operation and control of energy systems. State-of-the-art analysis techniques, including co-simulation and digital twin technologies, are employed to address various layers of interdependence between cyber and physical systems, facilitating the identification of potential threats and vulnerabilities. The paper examines prospective trajectories for resilient cyber-physical systems and outlines the educational and workforce training imperatives for addressing cybersecurity threats in contemporary power systems. Furthermore, concluding remarks and future recommendations are provided to mitigate the inherent vulnerabilities within the extensively interoperable grid infrastructure.
Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Technology Transformation...UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsMengxiang Liu; Fei Teng; Zhenyong Zhang; Pudong Ge; Mingyang Sun; Ruilong Deng; Peng Cheng; Jiming Chen;The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid. Accepted by IEEE Transactions on Smart Grid
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3373008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3373008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Pudong Ge; Xiaobo Dou; Xiangjun Quan; Qinran Hu; Wanxing Sheng; Zaijun Wu; Wei Gu;This paper proposes an extended-state-observer-based distributed robust secondary voltage and frequency control for an autonomous microgrid (MG) with inverter-based distributed generators (DGs) considering the uncertainties from models and measurement noise. The MG is considered as a multi-agent system where each DG is defined as an agent and its controller only requires its own information and the information of its neighbors, but each DG obtains noisy measurements of the states of itself and its neighbors easily due to stochastic noise. Therefore, in this paper, an extended state observer is employed to estimate the accurate state information of each DG, which is significantly influenced by measurement noise. Furthermore, the distributed controllers based on a fast terminal sliding mode surface and an adaptive super-twisting algorithm are designed to track the voltage reference and to fasten the convergence rate against disturbances and uncertainties caused by parameter perturbation. Moreover, the distributed frequency controllers are also designed to restore the frequency and to guarantee the accurate active power sharing without power information of DGs. Finally, the effectiveness of the propose control strategy is illustrated by the simulation of an autonomous MG in MATLAB/Simulink.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2888562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2888562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Elsevier BV Funded by:UKRI | Technology Transformation...UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsAuthors: Pudong Ge; Fei Teng; Charalambos Konstantinou; Shiyan Hu;handle: 10044/1/99156 , 10754/671004
This paper proposes a cyber-physical cooperative mitigation framework to enhance power systems resilience under extreme events, e.g., earthquakes and hurricanes. Extreme events can simultaneously damage the physical-layer electric power infrastructure and the cyber-layer communication facilities. Microgrid (MG) has been widely recognised as an effective physical-layer response to such events, however, the mitigation strategy in the cyber lay is yet to be fully investigated. Therefore, this paper proposes a resilience-oriented centralised-to-decentralised framework to maintain the power supply of critical loads such as hospitals, data centers, etc., under extreme events. For the resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency regional communication when centralised base station being compromised. Owing to the limited reliable bandwidth that reserved as a backup, the inevitable delays are dynamically minimised and used to guide the design of a discrete-time distributed control algorithm to maintain post-event power supply. The effectiveness of the cooperative cyber-physical mitigation framework is demonstrated through extensive simulations in MATLAB/Simulink.
e-Prints Soton arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/99156Data sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/99156Data sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2021 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Siemens-EPSRC: Blockchain..., UKRI | JPI Urban Europe/NSFC: So..., UKRI | Technology Transformation...UKRI| Siemens-EPSRC: Blockchain-enabled cloud-edge coordination for demand side manangement ,UKRI| JPI Urban Europe/NSFC: Socio-Techno-Economic Pathways for sustainable Urban energy develoPment ,UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsAuthors: Pudong Ge; Boli Chen; Fei Teng;Networked microgrids with high penetration of distributed generators have ubiquitous remote information exchange, which may be exposed to various cyber security threats. This paper, for the first time, addresses a consensus problem in terms of frequency synchronisation in networked microgrids subject to multi-layer denial of service (DoS) attacks, which could simultaneously affect communication, measurement and control actuation channels. A unified notion of Persistency-of-Data-Flow (PoDF) is proposed to characterise the data unavailability in different information network links, and further quantifies the multi-layer DoS effects on the hierarchical system. With PoDF, we provide a sufficient condition of the DoS attacks under which the consensus can be preserved with the proposed edge-based self-triggered distributed control framework. In addition, to mitigate the conservativeness of offline design against the worst-case attack across all agents, an online self-adaptive scheme of the control parameters is developed to fully utilise the latest available information of all data transmission channels. Finally, the effectiveness of the proposed cyber-resilient self-triggered distributed control is verified by representative case studies. accepted by IEEE Trans. on Smart Grid
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3229486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3229486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | JPI Urban Europe/NSFC: So..., UKRI | Technology Transformation...UKRI| JPI Urban Europe/NSFC: Socio-Techno-Economic Pathways for sustainable Urban energy develoPment ,UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsAuthors: Pudong Ge; Yue Zhu; Tim C. Green; Fei Teng;handle: 10044/1/88341
This paper proposes a distributed secondary voltage control method based on extended state Kalman-Bucy filter (ESKBF) and fast terminal sliding mode (FTSM) control for the resilient operation of an islanded microgrid (MG) with inverter-based distributed generations (DGs). To tackle the co-existence of multiple uncertainties, a unified modelling framework is proposed to represent the set of different types of disturbances, including parameter perturbation, measurement noise, and immeasurably external variables, by an extended state method. Kalman-Bucy filter is then applied to accurately estimate the state information of the extended DG model. In addition, based on the accurate estimation, a fast terminal sliding mode (FTSM) surface with terminal attractors is designed to maintain the system stability and accelerate the convergence of consensus tracking, which significantly improves the performance of secondary voltage control under both normal and plug-and-play operation. Finally, case studies are conducted in both MATLAB/Simulink and an experimental testbed to demonstrate the effectiveness of the proposed method. accepted by IEEE Transactions on Power Systems
IEEE Transactions on... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryIEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryIEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3012026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Italy, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ioannis Zografopoulos; Ankur Srivastava; Charalambos Konstantinou; Junbo Zhao; Amir Abiri Jahromi; Astha Chawla; Bang Nguyen; Bu Siqi; Chendan Li; Fei Teng; Goli Preetham; Juan Ospina; Mohammad Asim Aftab; Mohammadreza Arani; Ömer Sen; Panayiotis Moutis; Pudong Ge; Qinglai Guo; Subham Sahoo; Subhash Lakshminarayana; Tuyen Vu; Zhaoyuan Wang;handle: 11567/1237715
This paper summarizes the technical endeavors undertaken by the Task Force (TF) on Cyber-Physical Interdependence for Power System Operation and Control. The TF was established to investigate the cyber-physical interdependence of critical power system elements and their influence on the operation and control of energy systems. State-of-the-art analysis techniques, including co-simulation and digital twin technologies, are employed to address various layers of interdependence between cyber and physical systems, facilitating the identification of potential threats and vulnerabilities. The paper examines prospective trajectories for resilient cyber-physical systems and outlines the educational and workforce training imperatives for addressing cybersecurity threats in contemporary power systems. Furthermore, concluding remarks and future recommendations are provided to mitigate the inherent vulnerabilities within the extensively interoperable grid infrastructure.
Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down IEEE Transactions on Smart GridArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2025.3538012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Technology Transformation...UKRI| Technology Transformation to Support Flexible and Resilient Local Energy SystemsMengxiang Liu; Fei Teng; Zhenyong Zhang; Pudong Ge; Mingyang Sun; Ruilong Deng; Peng Cheng; Jiming Chen;The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid. Accepted by IEEE Transactions on Smart Grid
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3373008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Smart GridArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2024.3373008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu