- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Djamel Saba; Fahima Hajjej; Omar Cheikhrouhou; Youcef Sahli; Abdelkader Hadidi; Habib Hamam;doi: 10.3390/app12178397
This paper presents a proposal for the development of a new intelligent solution for the optimization of hybrid energy systems. This solution is of great importance for installers of hybrid energy systems, as it helps them obtain the best configuration of the hybrid energy system (efficient and less expensive). In this solution, it is sufficient to enter the name of the location of the hybrid energy system that we want to install; after that, the solution will show the name of the best technology from which the optimal configuration of this system can be obtained. To accomplish this goal, the study relied on the ontology approach for two reasons, one of which is related to the nature of hybrid systems, because it is characterized by a large amount of information that requires good structuring, and the second reason is the interaction of hybrid energy systems with the external environment (climate, site characteristics). Afterward, to develop the knowledge base of the ontology, many steps were followed, the first of which is related to a detailed study of the existing one and the extraction of the basic elements, such as the concepts and the relations between them, followed by the development of the rules of intelligent reasoning, which is an interaction between the elements of the ontology through which all possible cases are treated. The “Protégé” software was used to edit these elements and perform the simulation process to show the results of the developed solution. Finally, the paper includes a case study, and the results show the importance of the developed solution, and it is open to future developments.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/17/8397/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12178397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/17/8397/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12178397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Bashir Khan Yousafzai; Sher Afzal Khan; Taj Rahman; Inayat Khan; Inam Ullah; Ateeq Ur Rehman; Mohammed Baz; Habib Hamam; Omar Cheikhrouhou;doi: 10.3390/su13179775
Educational data generated through various platforms such as e-learning, e-admission systems, and automated result management systems can be effectively processed through educational data mining techniques in order to gather highly useful insights into students’ performance. The prediction of student performance from historical academic data is a highly desirable application of educational data mining. In this regard, there is an urgent need to develop an automated technique for student performance prediction. Existing studies on student performance prediction primarily focus on utilizing the conventional feature representation schemes, where extracted features are fed to a classifier. In recent years, deep learning has enabled researchers to automatically extract high-level features from raw data. Such advanced feature representation schemes enable superior performance in challenging tasks. In this work, we examine the deep neural network model, namely, the attention-based Bidirectional Long Short-Term Memory (BiLSTM) network to efficiently predict student performance (grades) from historical data. In this article, we have used the most advanced BiLSTM combined with an attention mechanism model by analyzing existing research problems, which are based on advanced feature classification and prediction. This work is really vital for academicians, universities, and government departments to early predict the performance. The superior sequence learning capabilities of BiLSTM combined with attention mechanism yield superior performance compared to the existing state-of-the-art. The proposed method has achieved a prediction accuracy of 90.16%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9775/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9775/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Djamel Saba; Omar Cheikhrouhou; Wajdi Alhakami; Youcef Sahli; Abdelkader Hadidi; Habib Hamam;doi: 10.3390/app12041861
Algeria is characterized by extreme cold in winter and high heat and humidity in summer. This leads to an increase in the use of electrical appliances, which has a negative impact on electrical energy consumption and its high costs, especially with the high price of electricity in Algeria. In this context, artificial intelligence can help to regulate the daily consumption of electricity, by optimizing the exploitation of natural resources and alerting the individual to avoid energy wasting. This paper proposes a decision-making tool (IRRHEM) for managing electrical energy at smart home. The IRRHEM solution is based on three elements: the use of natural resources, the notification of the inhabitants in case of resources misuse or wasting behavior, and the aggregation of similar activities at same time. Additionally, based on the proposed intelligent reasoning rules, residents’ behavior and activities are represented by OWL (Ontology Web Language) and written and executed through SWRL (Semantic Web Rule Language). Finally, the (IRRHEM) solution is tested in a home located in Algiers city inhabited by a family of four persons. The IRRHEM performance evaluation results are very promising and show a 3.60% rate of energy saving.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/4/1861/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12041861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/4/1861/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12041861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Tech Science Press Paramjeet Kaur; Parma Nand; Salman Naseer; Akber Abid Gardezi; Fawaz Alassery; Habib Hamam; Omar Cheikhrouhou; Muhammad Shafiq;Le secteur public fournit des données ouvertes pour créer de nouvelles opportunités, stimuler l'innovation et mettre en œuvre de nouvelles solutions qui profitent au monde universitaire et à la société. Cependant, les données ouvertes sont généralement disponibles en grande quantité et manquent souvent de qualité, de précision et d'exhaustivité. Il peut être difficile de trouver les bonnes données pour analyser une cible. Il existe de nombreux référentiels de données ouvertes riches, mais ils sont difficiles à comprendre et à utiliser car ces données ne peuvent être utilisées qu'avec un ensemble complexe d'options de recherche par mot clé, et même alors, Des données non pertinentes ou insuffisantes peuvent éventuellement être récupérées. Pour remédier à cette situation, la recherche sémantique basée sur l'ontologie s'est avérée être un moyen efficace d'améliorer la qualité des requêtes de contenu connexes dans ces référentiels. Dans cet article, nous proposons une nouvelle méthode de liaison sémantique et de stockage d'ensembles de données gouvernementaux ouverts des secteurs de l'agriculture, des terres et des précipitations de la Nouvelle-Zélande, basée sur l'utilisation de l'ontologie. L'ontologie générée peut construire des données intégrées, dans lesquelles une requête unifiée peut être appliquée pour extraire des informations plus riches et plus utiles. Pour valider notre modèle, nous avons montré comment ontologie de lien manuellement et automatiquement. La liaison manuelle nécessite des experts de domaine, et la liaison automatique réduit le surcoût de s'appuyer sur des experts de domaine pour lier manuellement des concepts. Les résultats de cette méthode sont prometteurs en termes d'amélioration de la qualité des données et de l'efficacité de la recherche. À l'avenir, le modèle proposé peut être intégré à d'autres ontologies de domaine. El sector público proporciona datos abiertos para crear nuevas oportunidades, estimular la innovación e implementar nuevas soluciones que beneficien a la academia y la sociedad. Sin embargo, los datos abiertos generalmente están disponibles en grandes cantidades y, a menudo, carecen de calidad, precisión e integridad. Puede ser difícil encontrar los datos correctos para analizar un objetivo. Hay muchos repositorios de datos abiertos ricos, pero son difíciles de entender y usar porque estos datos solo se pueden usar con un conjunto complejo de opciones de búsqueda de palabras clave, e incluso entonces, datos irrelevantes o insuficientes pueden eventualmente recuperarse. Para aliviar esta situación, se ha demostrado que la búsqueda semántica basada en ontologías es una forma efectiva de mejorar la calidad de las consultas de contenido relacionado en dichos repositorios. En este documento, proponemos un nuevo método de vinculación semántica y almacenamiento de conjuntos de datos gubernamentales abiertos de los sectores de agricultura, tierras y precipitaciones de Nueva Zelanda basados en el uso de la ontología. La ontología generada puede construir datos integrados, en los que se puede aplicar una consulta unificada para extraer información más rica y útil. Para validar nuestro modelo, mostramos cómo enlace ontológico manual y automáticamente. El enlace manual requiere expertos en el dominio, y el enlace automático reduce la sobrecarga de depender de expertos en el dominio para vincular conceptos manualmente. Los resultados de este método son prometedores en términos de mejorar la calidad de los datos y la eficiencia de la búsqueda. En el futuro, el modelo propuesto se puede integrar con otras ontologías de dominio. The public sector provides open data to create new opportunities, stimulate innovation, and implement new solutions that benefit academia and society.However, open data is usually available in large quantities and often lacks quality, accuracy, and completeness.It may be difficult to find the right data to analyze a target.There are many rich open data repositories, but they are difficult to understand and use because these data can only be used with a complex set of keyword search options, and even then, irrelevant or insufficient data may eventually be retrieved.To alleviate this situation, ontology-based semantic search has been proven to be an effective way to improve the quality of related content queries in such repositories.In this paper, we propose a new method of semantic linking and storing open government datasets of New Zealand's agriculture, land and rainfall sectors based on the use of ontology.The generated ontology can construct integrated data, in which a unified query can be applied to extract richer and more useful information.To validate our model, we showed how to link ontology manually and automatically.Manual linking requires domain experts, and automatic linking reduces the overhead of relying on domain experts to manually link concepts.The results of this method are promising in terms of improving data quality and search efficiency.In future, the proposed model can be integrated with other domain ontologies. يوفر القطاع العام البيانات المفتوحة لخلق فرص جديدة، وتحفيز الابتكار، وتنفيذ حلول جديدة تفيد الأوساط الأكاديمية والمجتمع. ومع ذلك، عادة ما تكون البيانات المفتوحة متاحة بكميات كبيرة وغالبًا ما تفتقر إلى الجودة والدقة والاكتمال. قد يكون من الصعب العثور على البيانات الصحيحة لتحليل الهدف. هناك العديد من مستودعات البيانات المفتوحة الغنية، ولكن من الصعب فهمها واستخدامها لأنه لا يمكن استخدام هذه البيانات إلا مع مجموعة معقدة من خيارات البحث عن الكلمات الرئيسية، وحتى ذلك الحين، قد يتم في نهاية المطاف استرداد بيانات غير ذات صلة أو غير كافية. للتخفيف من هذا الوضع، ثبت أن البحث الدلالي القائم على الأنطولوجيا هو وسيلة فعالة لتحسين جودة استعلامات المحتوى ذات الصلة في مثل هذه المستودعات. في هذه الورقة، نقترح طريقة جديدة لربط وتخزين مجموعات البيانات الحكومية المفتوحة لقطاعات الزراعة والأراضي والأمطار في نيوزيلندا بناءً على استخدام الأنطولوجيا. يمكن للأنطولوجيا المتولدة بناء بيانات متكاملة، حيث يمكن تطبيق استعلام موحد لاستخراج معلومات أكثر ثراءً وفائدة. للتحقق من صحة نموذجنا، أظهرنا كيفية ربط الأنطولوجيا يدويًا وتلقائيًا. يتطلب الربط اليدوي خبراء المجال، والربط التلقائي يقلل من النفقات العامة للاعتماد على خبراء المجال لربط المفاهيم يدويًا. نتائج هذه الطريقة واعدة من حيث تحسين جودة البيانات وكفاءة البحث. في المستقبل، يمكن دمج النموذج المقترح مع أنطولوجيات المجال الأخرى.
Intelligent Automati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32604/iasc.2022.023063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Intelligent Automati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32604/iasc.2022.023063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:MDPI AG Tehreem Nasir; Safdar Raza; Muhammad Abrar; Hafiz Abdul Muqeet; Harun Jamil; Faiza Qayyum; Omar Cheikhrouhou; Fawaz Alassery; Habib Hamam;High energy consumption, rising environmental concerns and depleting fossil fuels demand an increase in clean energy production. The enhanced resiliency, efficiency and reliability offered by microgrids with distributed energy resources (DERs) have shown to be a promising alternative to the conventional grid system. Large-sized commercial customers like institutional complexes have put significant efforts to promote sustainability by establishing renewable energy systems at university campuses. This paper proposes the integration of a photovoltaic (PV) system, energy storage system (ESS) and electric vehicles (EV) at a University campus. An optimal energy management system (EMS) is proposed to optimally dispatch the energy from available energy resources. The problem is mapped in a Linear optimization problem and simulations are carried out in MATLAB. Simulation results showed that the proposed EMS ensures the continuous power supply and decreases the energy consumption cost by nearly 45%. The impact of EV as a storage tool is also observed. EVs acting as a source of energy reduced the energy cost by 45.58% and as a load by 19.33%. The impact on the cost for continuous power supply in case of a power outage is also analyzed.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/21/7133/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21217133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/21/7133/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21217133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Allahkaram Shafiei; Jakub Talla; Mohammad Jamshidi; Farzad Khani; Omar Cheikhrouhou; Habib Hamam; Habib Hamam; Mohammed Baz; Rahma Gantassi; Zdenek Peroutka;doi: 10.1155/2021/9194578
Emerging commucation technologies, such as mobile edge computing (MEC), Internet of Things (IoT), and fifth-generation (5G) broadband cellular networks, have recently drawn a great deal of interest. Therefore, numerous multiobjective optimization problems (MOOP) associated with the aforementioned technologies have arisen, for example, energy consumption, cost-effective edge user allocation (EUA), and efficient scheduling. Accordingly, the formularization of these problems through fuzzy relation equations (FRE) should be taken into consideration as a capable approach to achieving an optimized solution. In this paper, a modified technique based on a genetic algorithm (GA) to solve MOOPs, which are formulated by fuzzy relation constraints with s -norm, is proposed. In this method, firstly, some techniques are utilized to reduce the size of the problem, so that the reduced problem can be solved easily. The proposed GA-based technique is then applied to solve the reduced problem locally. The most important advantage of this method is to solve a wide variety of MOOPs in the field of IoT, EC, and 5G. Furthermore, some numerical experiments are conducted to show the capability of the proposed technique. Not only does this method overcome the weaknesses of conventional methods owing to its potentials in the nonconvex feasible domain, but it also is useful to model complex systems.
Mathematical Problem... arrow_drop_down Mathematical Problems in EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2021/9194578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mathematical Problem... arrow_drop_down Mathematical Problems in EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2021/9194578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Muhammad Hamza Bin Waheed; Faisal Jamil; Amir Qayyum; Harun Jamil; Omar Cheikhrouhou; Muhammad Ibrahim; Bharat Bhushan; Habib Hmam;doi: 10.3390/su13084541
The demand for multimedia content over the Internet protocol network is growing exponentially with Internet users’ growth. Despite high reliability and well-defined infrastructure for Internet protocol communication, Quality of Experience (QoE) is the primary focus of multimedia users while getting multimedia contents with flawless or smooth video streaming in less time with high availability. Failure to provide satisfactory QoE results in the churning of the viewers. QoE depends on various factors, such as those related to the network infrastructure that significantly affects perceived quality. Furthermore, the video delivery’s impact also plays an essential role in the overall QoE that can be made efficient by delivering content through specialized content delivery architectures called Content Delivery Networks (CDNs). This article proposes a design that enables effective and efficient streaming, distribution, and caching multimedia content. Moreover, experiments are carried out for the factors impacting QoE, and their behavior is evaluated. The statistical data is taken from real architecture and analysis. Likewise, we have compared the response time and throughput with the varying segment size in adaptive bitrate video streaming. Moreover, resource usage is also analyzed by incorporating the effect of CPU consumption and energy consumption over segment size, which will be counted as effective efforts for sustainable development of multimedia systems. The proposed architecture is validated and indulged as a core component for video streaming based on the use case of a Mobile IPTV solution for 4G/LTE Users.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Adnan Yousaf; Rao Muhammad Asif; Mustafa Shakir; Ateeq Ur Rehman; Fawaz Alassery; Habib Hamam; Omar Cheikhrouhou;doi: 10.3390/su132212693
Price forecasting (PF) is the primary concern in distributed power generation. This paper presents a novel and improved technique to forecast electricity prices. The data of various power producers, Capacity Purchase Price (CPP), Power Purchase Price (PPP), Tariff rates, and load demand from National Electric Power Regulatory Authority (NEPRA) are considered for MAPE reduction in PF. Eight time-series and auto-regression algorithms are developed for data fetching and setting the objective function. The feed-forward ANFIS based on the ML approach and space vector regression (SVR) is introduced to PF by taking the input from time series and auto-regression (AR) algorithms. Best-feature selection is conducted by adopting the Binary Genetic Algorithm (BGA)-Principal Component Analysis (PCA) approach that ultimately minimizes the complexity and computational time of the model. The proposed integration strategy computes the mean absolute percentage error (MAPE), and the overall improvement percentage is 9.24%, which is valuable in price forecasting of the energy management system (EMS). In the end, EMS based on the Firefly algorithm (FA) has been presented, and by implementing FA, the cost of electricity has been reduced by 21%, 19%, and 20% for building 1, 2, and 3, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Ahmad B. Hassanat; Sami Mnasri; Mohammed A. Aseeri; Khaled Alhazmi; Omar Cheikhrouhou; Ghada Altarawneh; Malek Alrashidi; Ahmad S. Tarawneh; Khalid S. Almohammadi; Hani Almoamari;doi: 10.3390/su13094888
The coronavirus pandemic (COVID-19) spreads worldwide during the first half of 2020. As is the case for all countries, the Kingdom of Saudi Arabia (KSA), where the number of reported cases reached more than 392 K in the first week of April 2021, was heavily affected by this pandemic. In this study, we introduce a new simulation model to examine the pandemic evolution in two major cities in KSA, namely, Riyadh (the capital city) and Jeddah (the second-largest city). Consequently, this study estimates and predicts the number of cases infected with COVID-19 in the upcoming months. The major advantage of this model is that it is based on real data for KSA, which makes it more realistic. Furthermore, this paper examines the parameters used to understand better and more accurately predict the shape of the infection curve, particularly in KSA. The obtained results show the importance of several parameters in reducing the pandemic spread: the infection rate, the social distance, and the walking distance of individuals. Through this work, we try to raise the awareness of the public and officials about the seriousness of future pandemic waves. In addition, we analyze the current data of the infected cases in KSA using a novel Gaussian curve fitting method. The results show that the expected pandemic curve is flattening, which is recorded in real data of infection. We also propose a new method to predict the new cases. The experimental results on KSA’s updated cases reveal that the proposed method outperforms some current prediction techniques, and therefore, it is more efficient in fighting possible future pandemics.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/4888/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/4888/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Djamel Saba; Fahima Hajjej; Omar Cheikhrouhou; Youcef Sahli; Abdelkader Hadidi; Habib Hamam;doi: 10.3390/app12178397
This paper presents a proposal for the development of a new intelligent solution for the optimization of hybrid energy systems. This solution is of great importance for installers of hybrid energy systems, as it helps them obtain the best configuration of the hybrid energy system (efficient and less expensive). In this solution, it is sufficient to enter the name of the location of the hybrid energy system that we want to install; after that, the solution will show the name of the best technology from which the optimal configuration of this system can be obtained. To accomplish this goal, the study relied on the ontology approach for two reasons, one of which is related to the nature of hybrid systems, because it is characterized by a large amount of information that requires good structuring, and the second reason is the interaction of hybrid energy systems with the external environment (climate, site characteristics). Afterward, to develop the knowledge base of the ontology, many steps were followed, the first of which is related to a detailed study of the existing one and the extraction of the basic elements, such as the concepts and the relations between them, followed by the development of the rules of intelligent reasoning, which is an interaction between the elements of the ontology through which all possible cases are treated. The “Protégé” software was used to edit these elements and perform the simulation process to show the results of the developed solution. Finally, the paper includes a case study, and the results show the importance of the developed solution, and it is open to future developments.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/17/8397/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12178397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/17/8397/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12178397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Bashir Khan Yousafzai; Sher Afzal Khan; Taj Rahman; Inayat Khan; Inam Ullah; Ateeq Ur Rehman; Mohammed Baz; Habib Hamam; Omar Cheikhrouhou;doi: 10.3390/su13179775
Educational data generated through various platforms such as e-learning, e-admission systems, and automated result management systems can be effectively processed through educational data mining techniques in order to gather highly useful insights into students’ performance. The prediction of student performance from historical academic data is a highly desirable application of educational data mining. In this regard, there is an urgent need to develop an automated technique for student performance prediction. Existing studies on student performance prediction primarily focus on utilizing the conventional feature representation schemes, where extracted features are fed to a classifier. In recent years, deep learning has enabled researchers to automatically extract high-level features from raw data. Such advanced feature representation schemes enable superior performance in challenging tasks. In this work, we examine the deep neural network model, namely, the attention-based Bidirectional Long Short-Term Memory (BiLSTM) network to efficiently predict student performance (grades) from historical data. In this article, we have used the most advanced BiLSTM combined with an attention mechanism model by analyzing existing research problems, which are based on advanced feature classification and prediction. This work is really vital for academicians, universities, and government departments to early predict the performance. The superior sequence learning capabilities of BiLSTM combined with attention mechanism yield superior performance compared to the existing state-of-the-art. The proposed method has achieved a prediction accuracy of 90.16%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9775/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9775/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Djamel Saba; Omar Cheikhrouhou; Wajdi Alhakami; Youcef Sahli; Abdelkader Hadidi; Habib Hamam;doi: 10.3390/app12041861
Algeria is characterized by extreme cold in winter and high heat and humidity in summer. This leads to an increase in the use of electrical appliances, which has a negative impact on electrical energy consumption and its high costs, especially with the high price of electricity in Algeria. In this context, artificial intelligence can help to regulate the daily consumption of electricity, by optimizing the exploitation of natural resources and alerting the individual to avoid energy wasting. This paper proposes a decision-making tool (IRRHEM) for managing electrical energy at smart home. The IRRHEM solution is based on three elements: the use of natural resources, the notification of the inhabitants in case of resources misuse or wasting behavior, and the aggregation of similar activities at same time. Additionally, based on the proposed intelligent reasoning rules, residents’ behavior and activities are represented by OWL (Ontology Web Language) and written and executed through SWRL (Semantic Web Rule Language). Finally, the (IRRHEM) solution is tested in a home located in Algiers city inhabited by a family of four persons. The IRRHEM performance evaluation results are very promising and show a 3.60% rate of energy saving.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/4/1861/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12041861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/4/1861/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12041861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Tech Science Press Paramjeet Kaur; Parma Nand; Salman Naseer; Akber Abid Gardezi; Fawaz Alassery; Habib Hamam; Omar Cheikhrouhou; Muhammad Shafiq;Le secteur public fournit des données ouvertes pour créer de nouvelles opportunités, stimuler l'innovation et mettre en œuvre de nouvelles solutions qui profitent au monde universitaire et à la société. Cependant, les données ouvertes sont généralement disponibles en grande quantité et manquent souvent de qualité, de précision et d'exhaustivité. Il peut être difficile de trouver les bonnes données pour analyser une cible. Il existe de nombreux référentiels de données ouvertes riches, mais ils sont difficiles à comprendre et à utiliser car ces données ne peuvent être utilisées qu'avec un ensemble complexe d'options de recherche par mot clé, et même alors, Des données non pertinentes ou insuffisantes peuvent éventuellement être récupérées. Pour remédier à cette situation, la recherche sémantique basée sur l'ontologie s'est avérée être un moyen efficace d'améliorer la qualité des requêtes de contenu connexes dans ces référentiels. Dans cet article, nous proposons une nouvelle méthode de liaison sémantique et de stockage d'ensembles de données gouvernementaux ouverts des secteurs de l'agriculture, des terres et des précipitations de la Nouvelle-Zélande, basée sur l'utilisation de l'ontologie. L'ontologie générée peut construire des données intégrées, dans lesquelles une requête unifiée peut être appliquée pour extraire des informations plus riches et plus utiles. Pour valider notre modèle, nous avons montré comment ontologie de lien manuellement et automatiquement. La liaison manuelle nécessite des experts de domaine, et la liaison automatique réduit le surcoût de s'appuyer sur des experts de domaine pour lier manuellement des concepts. Les résultats de cette méthode sont prometteurs en termes d'amélioration de la qualité des données et de l'efficacité de la recherche. À l'avenir, le modèle proposé peut être intégré à d'autres ontologies de domaine. El sector público proporciona datos abiertos para crear nuevas oportunidades, estimular la innovación e implementar nuevas soluciones que beneficien a la academia y la sociedad. Sin embargo, los datos abiertos generalmente están disponibles en grandes cantidades y, a menudo, carecen de calidad, precisión e integridad. Puede ser difícil encontrar los datos correctos para analizar un objetivo. Hay muchos repositorios de datos abiertos ricos, pero son difíciles de entender y usar porque estos datos solo se pueden usar con un conjunto complejo de opciones de búsqueda de palabras clave, e incluso entonces, datos irrelevantes o insuficientes pueden eventualmente recuperarse. Para aliviar esta situación, se ha demostrado que la búsqueda semántica basada en ontologías es una forma efectiva de mejorar la calidad de las consultas de contenido relacionado en dichos repositorios. En este documento, proponemos un nuevo método de vinculación semántica y almacenamiento de conjuntos de datos gubernamentales abiertos de los sectores de agricultura, tierras y precipitaciones de Nueva Zelanda basados en el uso de la ontología. La ontología generada puede construir datos integrados, en los que se puede aplicar una consulta unificada para extraer información más rica y útil. Para validar nuestro modelo, mostramos cómo enlace ontológico manual y automáticamente. El enlace manual requiere expertos en el dominio, y el enlace automático reduce la sobrecarga de depender de expertos en el dominio para vincular conceptos manualmente. Los resultados de este método son prometedores en términos de mejorar la calidad de los datos y la eficiencia de la búsqueda. En el futuro, el modelo propuesto se puede integrar con otras ontologías de dominio. The public sector provides open data to create new opportunities, stimulate innovation, and implement new solutions that benefit academia and society.However, open data is usually available in large quantities and often lacks quality, accuracy, and completeness.It may be difficult to find the right data to analyze a target.There are many rich open data repositories, but they are difficult to understand and use because these data can only be used with a complex set of keyword search options, and even then, irrelevant or insufficient data may eventually be retrieved.To alleviate this situation, ontology-based semantic search has been proven to be an effective way to improve the quality of related content queries in such repositories.In this paper, we propose a new method of semantic linking and storing open government datasets of New Zealand's agriculture, land and rainfall sectors based on the use of ontology.The generated ontology can construct integrated data, in which a unified query can be applied to extract richer and more useful information.To validate our model, we showed how to link ontology manually and automatically.Manual linking requires domain experts, and automatic linking reduces the overhead of relying on domain experts to manually link concepts.The results of this method are promising in terms of improving data quality and search efficiency.In future, the proposed model can be integrated with other domain ontologies. يوفر القطاع العام البيانات المفتوحة لخلق فرص جديدة، وتحفيز الابتكار، وتنفيذ حلول جديدة تفيد الأوساط الأكاديمية والمجتمع. ومع ذلك، عادة ما تكون البيانات المفتوحة متاحة بكميات كبيرة وغالبًا ما تفتقر إلى الجودة والدقة والاكتمال. قد يكون من الصعب العثور على البيانات الصحيحة لتحليل الهدف. هناك العديد من مستودعات البيانات المفتوحة الغنية، ولكن من الصعب فهمها واستخدامها لأنه لا يمكن استخدام هذه البيانات إلا مع مجموعة معقدة من خيارات البحث عن الكلمات الرئيسية، وحتى ذلك الحين، قد يتم في نهاية المطاف استرداد بيانات غير ذات صلة أو غير كافية. للتخفيف من هذا الوضع، ثبت أن البحث الدلالي القائم على الأنطولوجيا هو وسيلة فعالة لتحسين جودة استعلامات المحتوى ذات الصلة في مثل هذه المستودعات. في هذه الورقة، نقترح طريقة جديدة لربط وتخزين مجموعات البيانات الحكومية المفتوحة لقطاعات الزراعة والأراضي والأمطار في نيوزيلندا بناءً على استخدام الأنطولوجيا. يمكن للأنطولوجيا المتولدة بناء بيانات متكاملة، حيث يمكن تطبيق استعلام موحد لاستخراج معلومات أكثر ثراءً وفائدة. للتحقق من صحة نموذجنا، أظهرنا كيفية ربط الأنطولوجيا يدويًا وتلقائيًا. يتطلب الربط اليدوي خبراء المجال، والربط التلقائي يقلل من النفقات العامة للاعتماد على خبراء المجال لربط المفاهيم يدويًا. نتائج هذه الطريقة واعدة من حيث تحسين جودة البيانات وكفاءة البحث. في المستقبل، يمكن دمج النموذج المقترح مع أنطولوجيات المجال الأخرى.
Intelligent Automati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32604/iasc.2022.023063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Intelligent Automati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32604/iasc.2022.023063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:MDPI AG Tehreem Nasir; Safdar Raza; Muhammad Abrar; Hafiz Abdul Muqeet; Harun Jamil; Faiza Qayyum; Omar Cheikhrouhou; Fawaz Alassery; Habib Hamam;High energy consumption, rising environmental concerns and depleting fossil fuels demand an increase in clean energy production. The enhanced resiliency, efficiency and reliability offered by microgrids with distributed energy resources (DERs) have shown to be a promising alternative to the conventional grid system. Large-sized commercial customers like institutional complexes have put significant efforts to promote sustainability by establishing renewable energy systems at university campuses. This paper proposes the integration of a photovoltaic (PV) system, energy storage system (ESS) and electric vehicles (EV) at a University campus. An optimal energy management system (EMS) is proposed to optimally dispatch the energy from available energy resources. The problem is mapped in a Linear optimization problem and simulations are carried out in MATLAB. Simulation results showed that the proposed EMS ensures the continuous power supply and decreases the energy consumption cost by nearly 45%. The impact of EV as a storage tool is also observed. EVs acting as a source of energy reduced the energy cost by 45.58% and as a load by 19.33%. The impact on the cost for continuous power supply in case of a power outage is also analyzed.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/21/7133/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21217133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/21/7133/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21217133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Allahkaram Shafiei; Jakub Talla; Mohammad Jamshidi; Farzad Khani; Omar Cheikhrouhou; Habib Hamam; Habib Hamam; Mohammed Baz; Rahma Gantassi; Zdenek Peroutka;doi: 10.1155/2021/9194578
Emerging commucation technologies, such as mobile edge computing (MEC), Internet of Things (IoT), and fifth-generation (5G) broadband cellular networks, have recently drawn a great deal of interest. Therefore, numerous multiobjective optimization problems (MOOP) associated with the aforementioned technologies have arisen, for example, energy consumption, cost-effective edge user allocation (EUA), and efficient scheduling. Accordingly, the formularization of these problems through fuzzy relation equations (FRE) should be taken into consideration as a capable approach to achieving an optimized solution. In this paper, a modified technique based on a genetic algorithm (GA) to solve MOOPs, which are formulated by fuzzy relation constraints with s -norm, is proposed. In this method, firstly, some techniques are utilized to reduce the size of the problem, so that the reduced problem can be solved easily. The proposed GA-based technique is then applied to solve the reduced problem locally. The most important advantage of this method is to solve a wide variety of MOOPs in the field of IoT, EC, and 5G. Furthermore, some numerical experiments are conducted to show the capability of the proposed technique. Not only does this method overcome the weaknesses of conventional methods owing to its potentials in the nonconvex feasible domain, but it also is useful to model complex systems.
Mathematical Problem... arrow_drop_down Mathematical Problems in EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2021/9194578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mathematical Problem... arrow_drop_down Mathematical Problems in EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2021/9194578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Muhammad Hamza Bin Waheed; Faisal Jamil; Amir Qayyum; Harun Jamil; Omar Cheikhrouhou; Muhammad Ibrahim; Bharat Bhushan; Habib Hmam;doi: 10.3390/su13084541
The demand for multimedia content over the Internet protocol network is growing exponentially with Internet users’ growth. Despite high reliability and well-defined infrastructure for Internet protocol communication, Quality of Experience (QoE) is the primary focus of multimedia users while getting multimedia contents with flawless or smooth video streaming in less time with high availability. Failure to provide satisfactory QoE results in the churning of the viewers. QoE depends on various factors, such as those related to the network infrastructure that significantly affects perceived quality. Furthermore, the video delivery’s impact also plays an essential role in the overall QoE that can be made efficient by delivering content through specialized content delivery architectures called Content Delivery Networks (CDNs). This article proposes a design that enables effective and efficient streaming, distribution, and caching multimedia content. Moreover, experiments are carried out for the factors impacting QoE, and their behavior is evaluated. The statistical data is taken from real architecture and analysis. Likewise, we have compared the response time and throughput with the varying segment size in adaptive bitrate video streaming. Moreover, resource usage is also analyzed by incorporating the effect of CPU consumption and energy consumption over segment size, which will be counted as effective efforts for sustainable development of multimedia systems. The proposed architecture is validated and indulged as a core component for video streaming based on the use case of a Mobile IPTV solution for 4G/LTE Users.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Adnan Yousaf; Rao Muhammad Asif; Mustafa Shakir; Ateeq Ur Rehman; Fawaz Alassery; Habib Hamam; Omar Cheikhrouhou;doi: 10.3390/su132212693
Price forecasting (PF) is the primary concern in distributed power generation. This paper presents a novel and improved technique to forecast electricity prices. The data of various power producers, Capacity Purchase Price (CPP), Power Purchase Price (PPP), Tariff rates, and load demand from National Electric Power Regulatory Authority (NEPRA) are considered for MAPE reduction in PF. Eight time-series and auto-regression algorithms are developed for data fetching and setting the objective function. The feed-forward ANFIS based on the ML approach and space vector regression (SVR) is introduced to PF by taking the input from time series and auto-regression (AR) algorithms. Best-feature selection is conducted by adopting the Binary Genetic Algorithm (BGA)-Principal Component Analysis (PCA) approach that ultimately minimizes the complexity and computational time of the model. The proposed integration strategy computes the mean absolute percentage error (MAPE), and the overall improvement percentage is 9.24%, which is valuable in price forecasting of the energy management system (EMS). In the end, EMS based on the Firefly algorithm (FA) has been presented, and by implementing FA, the cost of electricity has been reduced by 21%, 19%, and 20% for building 1, 2, and 3, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Ahmad B. Hassanat; Sami Mnasri; Mohammed A. Aseeri; Khaled Alhazmi; Omar Cheikhrouhou; Ghada Altarawneh; Malek Alrashidi; Ahmad S. Tarawneh; Khalid S. Almohammadi; Hani Almoamari;doi: 10.3390/su13094888
The coronavirus pandemic (COVID-19) spreads worldwide during the first half of 2020. As is the case for all countries, the Kingdom of Saudi Arabia (KSA), where the number of reported cases reached more than 392 K in the first week of April 2021, was heavily affected by this pandemic. In this study, we introduce a new simulation model to examine the pandemic evolution in two major cities in KSA, namely, Riyadh (the capital city) and Jeddah (the second-largest city). Consequently, this study estimates and predicts the number of cases infected with COVID-19 in the upcoming months. The major advantage of this model is that it is based on real data for KSA, which makes it more realistic. Furthermore, this paper examines the parameters used to understand better and more accurately predict the shape of the infection curve, particularly in KSA. The obtained results show the importance of several parameters in reducing the pandemic spread: the infection rate, the social distance, and the walking distance of individuals. Through this work, we try to raise the awareness of the public and officials about the seriousness of future pandemic waves. In addition, we analyze the current data of the infected cases in KSA using a novel Gaussian curve fitting method. The results show that the expected pandemic curve is flattening, which is recorded in real data of infection. We also propose a new method to predict the new cases. The experimental results on KSA’s updated cases reveal that the proposed method outperforms some current prediction techniques, and therefore, it is more efficient in fighting possible future pandemics.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/4888/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/4888/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13094888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu