
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Simulation Model for Forecasting COVID-19 Pandemic Spread: Analytical Results Based on the Current Saudi COVID-19 Data

doi: 10.3390/su13094888
The coronavirus pandemic (COVID-19) spreads worldwide during the first half of 2020. As is the case for all countries, the Kingdom of Saudi Arabia (KSA), where the number of reported cases reached more than 392 K in the first week of April 2021, was heavily affected by this pandemic. In this study, we introduce a new simulation model to examine the pandemic evolution in two major cities in KSA, namely, Riyadh (the capital city) and Jeddah (the second-largest city). Consequently, this study estimates and predicts the number of cases infected with COVID-19 in the upcoming months. The major advantage of this model is that it is based on real data for KSA, which makes it more realistic. Furthermore, this paper examines the parameters used to understand better and more accurately predict the shape of the infection curve, particularly in KSA. The obtained results show the importance of several parameters in reducing the pandemic spread: the infection rate, the social distance, and the walking distance of individuals. Through this work, we try to raise the awareness of the public and officials about the seriousness of future pandemic waves. In addition, we analyze the current data of the infected cases in KSA using a novel Gaussian curve fitting method. The results show that the expected pandemic curve is flattening, which is recorded in real data of infection. We also propose a new method to predict the new cases. The experimental results on KSA’s updated cases reveal that the proposed method outperforms some current prediction techniques, and therefore, it is more efficient in fighting possible future pandemics.
- University of Toulouse France
- University of Tabuk Saudi Arabia
- Taif University Saudi Arabia
- Eötvös Loránd University Hungary
- Mutah University Jordan
Environmental effects of industries and plants, COVID-19, infection rate, Gaussian curve fit, TJ807-830, forecasting, prediction, simulation, TD194-195, Renewable energy sources, Environmental sciences, regression, GE1-350
Environmental effects of industries and plants, COVID-19, infection rate, Gaussian curve fit, TJ807-830, forecasting, prediction, simulation, TD194-195, Renewable energy sources, Environmental sciences, regression, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
