- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Pecl, Gretta T.; Ward, Tim M.; Doubleday, Zoë A.; Clarke, Steven; Day, Jemery; Dixon, Cameron; Frusher, Stewart; Gibbs, Philip; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah; Jones, Keith; Li, Xiaoxu; Spooner, Daniel; Stoklosa, Richard;handle: 11541.2/136520 , 2440/97013
Climate change driven alterations in the distribution and abundance of marine species, and the timing of their life history events (phenology), are being reported around the globe. However, we have limited capacity to detect and predict these responses, even for comparatively well studied commercial fishery species. Fisheries provide significant socio-economic benefits for many coastal communities, and early warning of potential changes to fish stocks will provide managers and other stakeholders with the best opportunity to adapt to these impacts. Rapid assessment methods that can estimate the sensitivity of species to climate change in a wide range of contexts are needed. This study establishes an objective, flexible and cost effective framework for prioritising future ecological research and subsequent investment in adaptation responses in the face of resource constraints. We build on an ecological risk assessment framework to assess relative sensitivities of commercial species to climate change drivers, specifically in relation to their distribution, abundance and phenology, and demonstrate our approach using key species within the fast warming region of south-eastern Australia. Our approach has enabled fisheries managers to understand likely changes to fisheries under a range of climate change scenarios, highlighted critical research gaps and priorities, and assisted marine industries to identify adaptation strategies that maximise positive outcomes.
Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Pecl, Gretta T.; Ward, Tim M.; Doubleday, Zoë A.; Clarke, Steven; Day, Jemery; Dixon, Cameron; Frusher, Stewart; Gibbs, Philip; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah; Jones, Keith; Li, Xiaoxu; Spooner, Daniel; Stoklosa, Richard;handle: 11541.2/136520 , 2440/97013
Climate change driven alterations in the distribution and abundance of marine species, and the timing of their life history events (phenology), are being reported around the globe. However, we have limited capacity to detect and predict these responses, even for comparatively well studied commercial fishery species. Fisheries provide significant socio-economic benefits for many coastal communities, and early warning of potential changes to fish stocks will provide managers and other stakeholders with the best opportunity to adapt to these impacts. Rapid assessment methods that can estimate the sensitivity of species to climate change in a wide range of contexts are needed. This study establishes an objective, flexible and cost effective framework for prioritising future ecological research and subsequent investment in adaptation responses in the face of resource constraints. We build on an ecological risk assessment framework to assess relative sensitivities of commercial species to climate change drivers, specifically in relation to their distribution, abundance and phenology, and demonstrate our approach using key species within the fast warming region of south-eastern Australia. Our approach has enabled fisheries managers to understand likely changes to fisheries under a range of climate change scenarios, highlighted critical research gaps and priorities, and assisted marine industries to identify adaptation strategies that maximise positive outcomes.
Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Funded by:ARC | Conservation planning: in...ARC| Conservation planning: incorporating patch dynamics and climate change to achieve better outcomesThomas H. Holmes; Gretta T. Pecl; Zoë A. Doubleday; Zoë A. Doubleday; Natalie C. Ban; Elizabeth M. P. Madin; Franz Smith;handle: 11541.2/136529 , 2440/72742
Climate change is leading to a redistribution of marine species, altering ecosystem dynamics as species extend or shift their geographic ranges polewards with warming waters. In marine systems, range shifts have been observed in a wide diversity of species and ecosystems and are predicted to become more prevalent as environmental conditions continue to change. Large-scale shifts in the ranges of marine species will likely have dramatic socio-economic and management implications. Australia provides a unique setting in which to examine the range of consequences of climate-induced range shifts because it encompasses a diverse range of ecosystems, spanning tropical to temperate systems, within a single nation and is home to global sea surface temperature change ‘hotspots’ (where range shifts are particularly likely to occur). We draw on global examples with a particular emphasis on Australian cases to evaluate these consequences. We show that in Australia, range shifts span a variety of ecosystem types, trophic levels, and perceived outcomes (i.e., negative versus positive). The effect(s) of range shifts on socio-economic change variables are rarely reviewed, yet have the potential to have positive and/or negative effects on economic activities, human health and ecosystem services. Even less information exists about potential management responses to range-shifting species. However, synthesis of these diverse examples provides some initial guidance for selecting effective adaptive response strategies and management tools in the face of continuing climate-mediated range shifts.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Funded by:ARC | Conservation planning: in...ARC| Conservation planning: incorporating patch dynamics and climate change to achieve better outcomesThomas H. Holmes; Gretta T. Pecl; Zoë A. Doubleday; Zoë A. Doubleday; Natalie C. Ban; Elizabeth M. P. Madin; Franz Smith;handle: 11541.2/136529 , 2440/72742
Climate change is leading to a redistribution of marine species, altering ecosystem dynamics as species extend or shift their geographic ranges polewards with warming waters. In marine systems, range shifts have been observed in a wide diversity of species and ecosystems and are predicted to become more prevalent as environmental conditions continue to change. Large-scale shifts in the ranges of marine species will likely have dramatic socio-economic and management implications. Australia provides a unique setting in which to examine the range of consequences of climate-induced range shifts because it encompasses a diverse range of ecosystems, spanning tropical to temperate systems, within a single nation and is home to global sea surface temperature change ‘hotspots’ (where range shifts are particularly likely to occur). We draw on global examples with a particular emphasis on Australian cases to evaluate these consequences. We show that in Australia, range shifts span a variety of ecosystem types, trophic levels, and perceived outcomes (i.e., negative versus positive). The effect(s) of range shifts on socio-economic change variables are rarely reviewed, yet have the potential to have positive and/or negative effects on economic activities, human health and ecosystem services. Even less information exists about potential management responses to range-shifting species. However, synthesis of these diverse examples provides some initial guidance for selecting effective adaptive response strategies and management tools in the face of continuing climate-mediated range shifts.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Australia, SpainPublisher:Frontiers Media SA Rui Rosa; Rui Rosa; Zoe Doubleday; Michael J. Kuba; Jan M. Strugnell; Erica A. G. Vidal; Roger Villanueva;Editorial on the Research Topic Cephalopods in the Anthropocene: multiple challenges in a changing ocean.-- 4 pages, 1 figure The Anthropocene describes the new geological epoch driven by humankind (Lewis and Maslin, 2015). Overfishing, pollution, and climate change are some of the unquestionable human-driven threats to ocean biodiversity (Pauly et al., 1998; Poloczanska et al., 2013; Steneck and Pauly, 2019; Sampaio et al., 2021) and within the notion of winners and losers of global change, there is evidence that some cephalopod populations may be benefiting from this changing ocean (Doubleday et al., 2016; Oesterwind et al., 2022). Within this context, this Research Topic (RT) aimed to compile the latest advances in cephalopod research, covering a wide range of disciplines, and encompassing different levels of biological organization (from molecules to ecosystems). Authors who contributed to the triennial Cephalopod International Advisory Council (CIAC) Meeting held in Sesimbra (Portugal), in April 2022, were especially encouraged to submit their findings here. CIAC 2022 provided a forum to discuss global issues related to human impacts while presenting the latest advances in cephalopod research. The meeting encompassed 90 oral presentations and 145 posters, grouped into eight topic sessions (Figure 1A), with 166 participants in person and 109 participants online, from 33 countries (Figure 1B) With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) Peer reviewed
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 62visibility views 62 download downloads 81 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Australia, SpainPublisher:Frontiers Media SA Rui Rosa; Rui Rosa; Zoe Doubleday; Michael J. Kuba; Jan M. Strugnell; Erica A. G. Vidal; Roger Villanueva;Editorial on the Research Topic Cephalopods in the Anthropocene: multiple challenges in a changing ocean.-- 4 pages, 1 figure The Anthropocene describes the new geological epoch driven by humankind (Lewis and Maslin, 2015). Overfishing, pollution, and climate change are some of the unquestionable human-driven threats to ocean biodiversity (Pauly et al., 1998; Poloczanska et al., 2013; Steneck and Pauly, 2019; Sampaio et al., 2021) and within the notion of winners and losers of global change, there is evidence that some cephalopod populations may be benefiting from this changing ocean (Doubleday et al., 2016; Oesterwind et al., 2022). Within this context, this Research Topic (RT) aimed to compile the latest advances in cephalopod research, covering a wide range of disciplines, and encompassing different levels of biological organization (from molecules to ecosystems). Authors who contributed to the triennial Cephalopod International Advisory Council (CIAC) Meeting held in Sesimbra (Portugal), in April 2022, were especially encouraged to submit their findings here. CIAC 2022 provided a forum to discuss global issues related to human impacts while presenting the latest advances in cephalopod research. The meeting encompassed 90 oral presentations and 145 posters, grouped into eight topic sessions (Figure 1A), with 166 participants in person and 109 participants online, from 33 countries (Figure 1B) With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) Peer reviewed
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 62visibility views 62 download downloads 81 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Using ancient fish ear bo..., ARC | Changing perspective: usi...ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populations ,ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndromeMazloumi, N.; Burch, P.; Fowler, A.; Doubleday, Z.; Gillanders, B.;handle: 11541.2/136494 , 2440/107470
Otoliths of fish can provide long-term chronologies of growth. Differences in the width of the annual growth increments can reflect the effects of environmental variability on somatic growth rate. We used generalized linear mixed models (GLMM) to evaluate the influence of region, sea surface temperature (SST), El Nino–Southern Oscillation events, and recruitment on the otolith growth of King George whiting (Sillaginodes punctatus), a commercially and recreationally important fish species in southern Australia. Growth increment data spanned 25 years (1985–2010). The optimal model demonstrated that mean winter SST was negatively correlated to growth, and as the winter SST increased the average width of the growth increments declined. However, the temperature effect was very weak (r2: 0.0006). There were no regional growth differences and recruitment was not correlated with growth. Understanding long-term temperature-growth relationships is crucial for disentangling the effects of climate change and other parameters on fish growth, and thus predicting how populations will change in the future.
Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Using ancient fish ear bo..., ARC | Changing perspective: usi...ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populations ,ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndromeMazloumi, N.; Burch, P.; Fowler, A.; Doubleday, Z.; Gillanders, B.;handle: 11541.2/136494 , 2440/107470
Otoliths of fish can provide long-term chronologies of growth. Differences in the width of the annual growth increments can reflect the effects of environmental variability on somatic growth rate. We used generalized linear mixed models (GLMM) to evaluate the influence of region, sea surface temperature (SST), El Nino–Southern Oscillation events, and recruitment on the otolith growth of King George whiting (Sillaginodes punctatus), a commercially and recreationally important fish species in southern Australia. Growth increment data spanned 25 years (1985–2010). The optimal model demonstrated that mean winter SST was negatively correlated to growth, and as the winter SST increased the average width of the growth increments declined. However, the temperature effect was very weak (r2: 0.0006). There were no regional growth differences and recruitment was not correlated with growth. Understanding long-term temperature-growth relationships is crucial for disentangling the effects of climate change and other parameters on fish growth, and thus predicting how populations will change in the future.
Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, United Kingdom, Australia, South Africa, South Africa, AustraliaPublisher:Elsevier BV Authors: Doubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; +7 AuthorsDoubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; Semmens, Jayson; Steer, Michael; Leporati, Stephen C.; Lourenco, Silvia; Quetglas, Antoni; Sauer, Warwick; Gillanders, Bronwyn M.;pmid: 27218844
handle: 10508/10625 , 10261/323268 , 11541.2/136859 , 10962/124560 , 2164/8676
Human activities have substantially changed the world's oceans in recent decades, altering marine food webs, habitats and biogeochemical processes [1]. Cephalopods (squid, cuttlefish and octopuses) have a unique set of biological traits, including rapid growth, short lifespans and strong life-history plasticity, allowing them to adapt quickly to changing environmental conditions [2-4]. There has been growing speculation that cephalopod populations are proliferating in response to a changing environment, a perception fuelled by increasing trends in cephalopod fisheries catch [4,5]. To investigate long-term trends in cephalopod abundance, we assembled global time-series of cephalopod catch rates (catch per unit of fishing or sampling effort). We show that cephalopod populations have increased over the last six decades, a result that was remarkably consistent across a highly diverse set of cephalopod taxa. Positive trends were also evident for both fisheries-dependent and fisheries-independent time-series, suggesting that trends are not solely due to factors associated with developing fisheries. Our results suggest that large-scale, directional processes, common to a range of coastal and oceanic environments, are responsible. This study presents the first evidence that cephalopod populations have increased globally, indicating that these ecologically and commercially important invertebrates may have benefited from a changing ocean environment.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 248 citations 248 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 54 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, United Kingdom, Australia, South Africa, South Africa, AustraliaPublisher:Elsevier BV Authors: Doubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; +7 AuthorsDoubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; Semmens, Jayson; Steer, Michael; Leporati, Stephen C.; Lourenco, Silvia; Quetglas, Antoni; Sauer, Warwick; Gillanders, Bronwyn M.;pmid: 27218844
handle: 10508/10625 , 10261/323268 , 11541.2/136859 , 10962/124560 , 2164/8676
Human activities have substantially changed the world's oceans in recent decades, altering marine food webs, habitats and biogeochemical processes [1]. Cephalopods (squid, cuttlefish and octopuses) have a unique set of biological traits, including rapid growth, short lifespans and strong life-history plasticity, allowing them to adapt quickly to changing environmental conditions [2-4]. There has been growing speculation that cephalopod populations are proliferating in response to a changing environment, a perception fuelled by increasing trends in cephalopod fisheries catch [4,5]. To investigate long-term trends in cephalopod abundance, we assembled global time-series of cephalopod catch rates (catch per unit of fishing or sampling effort). We show that cephalopod populations have increased over the last six decades, a result that was remarkably consistent across a highly diverse set of cephalopod taxa. Positive trends were also evident for both fisheries-dependent and fisheries-independent time-series, suggesting that trends are not solely due to factors associated with developing fisheries. Our results suggest that large-scale, directional processes, common to a range of coastal and oceanic environments, are responsible. This study presents the first evidence that cephalopod populations have increased globally, indicating that these ecologically and commercially important invertebrates may have benefited from a changing ocean environment.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 248 citations 248 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 54 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 AustraliaPublisher:Public Library of Science (PLoS) Zoë A. Doubleday; Alice R. Jones; Marty R. Deveney; Tim M. Ward; Bronwyn M. Gillanders;Identifying the relative risk human activities pose to a habitat, and the ecosystem services they provide, can guide management prioritisation and resource allocation. Using a combination of expert elicitation to assess the probable effect of a threat and existing data to assess the level of threat exposure, we conducted a risk assessment for 38 human-mediated threats to eight marine habitats (totalling 304 threat-habitat combinations) in Spencer Gulf, Australia. We developed a score-based survey to collate expert opinion and assess the relative effect of each threat to each habitat, as well as a novel and independent measure of knowledge-based uncertainty. Fifty-five experts representing multiple sectors and institutions participated in the study, with 6 to 15 survey responses per habitat (n = 81 surveys). We identified key threats specific to each habitat; overall, climate change threats received the highest risk rankings, with nutrient discharge identified as a key local-scale stressor. Invasive species and most fishing-related threats, which are commonly identified as major threats to the marine environment, were ranked as low-tier threats to Spencer Gulf, emphasising the importance of regionally-relevant assessments. Further, we identified critical knowledge gaps and quantified uncertainty scores for each risk. Our approach will facilitate prioritisation of resource allocation in a region of increasing social, economic and environmental importance, and can be applied to marine regions where empirical data are lacking.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 AustraliaPublisher:Public Library of Science (PLoS) Zoë A. Doubleday; Alice R. Jones; Marty R. Deveney; Tim M. Ward; Bronwyn M. Gillanders;Identifying the relative risk human activities pose to a habitat, and the ecosystem services they provide, can guide management prioritisation and resource allocation. Using a combination of expert elicitation to assess the probable effect of a threat and existing data to assess the level of threat exposure, we conducted a risk assessment for 38 human-mediated threats to eight marine habitats (totalling 304 threat-habitat combinations) in Spencer Gulf, Australia. We developed a score-based survey to collate expert opinion and assess the relative effect of each threat to each habitat, as well as a novel and independent measure of knowledge-based uncertainty. Fifty-five experts representing multiple sectors and institutions participated in the study, with 6 to 15 survey responses per habitat (n = 81 surveys). We identified key threats specific to each habitat; overall, climate change threats received the highest risk rankings, with nutrient discharge identified as a key local-scale stressor. Invasive species and most fishing-related threats, which are commonly identified as major threats to the marine environment, were ranked as low-tier threats to Spencer Gulf, emphasising the importance of regionally-relevant assessments. Further, we identified critical knowledge gaps and quantified uncertainty scores for each risk. Our approach will facilitate prioritisation of resource allocation in a region of increasing social, economic and environmental importance, and can be applied to marine regions where empirical data are lacking.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Future Fellowships - ...ARC| ARC Future Fellowships - Grant ID: FT190100244Authors: Jade Lindley; Emily De Sousa; Zoe Doubleday; Patrick Reis-Santos;Seafood is an important source of protein and micronutrients, but fishery stocks are increasingly under pressure from both legitimate and illegitimate fishing practices. Sustainable management of our oceans is a global responsibility, aligning with United Nations Sustainable Development Goal 14, Life Below Water. In a post-COVID-19 world, there is an opportunity to build back better, where locally sourced food via transparent supply chains are ever-more important. This article summarises emerging research of two innovative case studies in detecting and validating seafood provenance; and using alternative supply chains to minimise the opportunity for seafood fraud in a post-COVID-19 world.
PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Future Fellowships - ...ARC| ARC Future Fellowships - Grant ID: FT190100244Authors: Jade Lindley; Emily De Sousa; Zoe Doubleday; Patrick Reis-Santos;Seafood is an important source of protein and micronutrients, but fishery stocks are increasingly under pressure from both legitimate and illegitimate fishing practices. Sustainable management of our oceans is a global responsibility, aligning with United Nations Sustainable Development Goal 14, Life Below Water. In a post-COVID-19 world, there is an opportunity to build back better, where locally sourced food via transparent supply chains are ever-more important. This article summarises emerging research of two innovative case studies in detecting and validating seafood provenance; and using alternative supply chains to minimise the opportunity for seafood fraud in a post-COVID-19 world.
PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Qiaz Q. H. Hua; Dietmar Kültz; Kathryn Wiltshire; Zoe A. Doubleday; Bronwyn M. Gillanders;doi: 10.1111/gcb.17255
pmid: 38572638
AbstractGlobal warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S‐crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non‐essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Qiaz Q. H. Hua; Dietmar Kültz; Kathryn Wiltshire; Zoe A. Doubleday; Bronwyn M. Gillanders;doi: 10.1111/gcb.17255
pmid: 38572638
AbstractGlobal warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S‐crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non‐essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Changing perspective: usi..., ARC | Using ancient fish ear bo...ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndrome ,ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populationsDoubleday, Z.; Izzo, C.; Haddy, J.; Lyle, J.; Ye, Q.; Gillanders, B.;Long-term ecological datasets are vital for investigating how species respond to changes in their environment, yet there is a critical lack of such datasets from aquatic systems. We developed otolith growth 'chronologies' to reconstruct the growth history of a temperate estuarine fish species, black bream (Acanthopagrus butcheri). Chronologies represented two regions in south-east Australia: South Australia, characterised by a relatively warm, dry climate, and Tasmania, characterised by a relatively cool, wet climate. Using a mixed modelling approach, we related inter-annual growth variation to air temperature, rainfall, freshwater inflow (South Australia only), and El Niño-Southern Oscillation events. Otolith chronologies provided a continuous record of growth over a 13- and 21-year period for fish from South Australia and Tasmania, respectively. Even though fish from Tasmania were sourced across multiple estuaries, they showed higher levels of growth synchronicity across years, and greater year-to-year growth variation, than fish from South Australia, which were sourced from a single, large estuary. Growth in Tasmanian fish declined markedly over the time period studied and was negatively correlated to temperature. In contrast, growth in South Australian fish was positively correlated to both temperature and rainfall. The stark contrast between the two regions suggests that Tasmanian black bream populations are more responsive to regional scale environmental variation and may be more vulnerable to global warming. This study highlights the importance of examining species response to climate change at the intra-specific level and further validates the emerging use of growth chronologies for generating long-term ecological data in aquatic systems.
Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Changing perspective: usi..., ARC | Using ancient fish ear bo...ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndrome ,ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populationsDoubleday, Z.; Izzo, C.; Haddy, J.; Lyle, J.; Ye, Q.; Gillanders, B.;Long-term ecological datasets are vital for investigating how species respond to changes in their environment, yet there is a critical lack of such datasets from aquatic systems. We developed otolith growth 'chronologies' to reconstruct the growth history of a temperate estuarine fish species, black bream (Acanthopagrus butcheri). Chronologies represented two regions in south-east Australia: South Australia, characterised by a relatively warm, dry climate, and Tasmania, characterised by a relatively cool, wet climate. Using a mixed modelling approach, we related inter-annual growth variation to air temperature, rainfall, freshwater inflow (South Australia only), and El Niño-Southern Oscillation events. Otolith chronologies provided a continuous record of growth over a 13- and 21-year period for fish from South Australia and Tasmania, respectively. Even though fish from Tasmania were sourced across multiple estuaries, they showed higher levels of growth synchronicity across years, and greater year-to-year growth variation, than fish from South Australia, which were sourced from a single, large estuary. Growth in Tasmanian fish declined markedly over the time period studied and was negatively correlated to temperature. In contrast, growth in South Australian fish was positively correlated to both temperature and rainfall. The stark contrast between the two regions suggests that Tasmanian black bream populations are more responsive to regional scale environmental variation and may be more vulnerable to global warming. This study highlights the importance of examining species response to climate change at the intra-specific level and further validates the emerging use of growth chronologies for generating long-term ecological data in aquatic systems.
Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Inter-Research Science Center Doubleday, Zoë A.; Clarke, Steven M.; Li, Xiaoxu; Pecl, Gretta T.; Ward, Tim M.; Battaglene, Stephen; Frusher, Stewart; Gibbs, Philip J.; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah M.; Stoklosa, Richard;doi: 10.3354/aei00058
handle: 11541.2/136533 , 2440/81458
A qualitative screening-level risk assessment was developed to evaluate relative lev- els of risk from climate change to aquaculture industries. The assessment was applied to 7 major industries in the temperate south-east region of Australia and involved a simple, transparent and repeatable methodology that was appropriate for a range of different aquaculture systems and taxa. Two key stages were involved: the development of comprehensive expertise-based litera- ture reviews or 'species profiles' and a scoring assessment, with the latter providing a defined framework within which industries could be ranked (from high to low risk). In addition to inform- ing the second stage of the risk assessment process, the species' profiles also highlighted impor- tant climate change drivers and key information uncertainties and knowledge gaps. There was good resolution among the scoring assessments, with only 2 industries receiving the same risk score. The results indicated that oysters farmed from wild spat (Sydney rock oysters Saccostrea glomerata) were at most risk to climate change, with warm temperate hatchery-based finfish spe- cies (yellowtail kingfish Seriola lalandi) being the least at risk. This study provides critical guid- ance for scientists, resource managers and stakeholders for future research, both in addressing key knowledge gaps and focussing the development of more detailed risk analyses for high risk aquaculture industries in south-east Australia.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Inter-Research Science Center Doubleday, Zoë A.; Clarke, Steven M.; Li, Xiaoxu; Pecl, Gretta T.; Ward, Tim M.; Battaglene, Stephen; Frusher, Stewart; Gibbs, Philip J.; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah M.; Stoklosa, Richard;doi: 10.3354/aei00058
handle: 11541.2/136533 , 2440/81458
A qualitative screening-level risk assessment was developed to evaluate relative lev- els of risk from climate change to aquaculture industries. The assessment was applied to 7 major industries in the temperate south-east region of Australia and involved a simple, transparent and repeatable methodology that was appropriate for a range of different aquaculture systems and taxa. Two key stages were involved: the development of comprehensive expertise-based litera- ture reviews or 'species profiles' and a scoring assessment, with the latter providing a defined framework within which industries could be ranked (from high to low risk). In addition to inform- ing the second stage of the risk assessment process, the species' profiles also highlighted impor- tant climate change drivers and key information uncertainties and knowledge gaps. There was good resolution among the scoring assessments, with only 2 industries receiving the same risk score. The results indicated that oysters farmed from wild spat (Sydney rock oysters Saccostrea glomerata) were at most risk to climate change, with warm temperate hatchery-based finfish spe- cies (yellowtail kingfish Seriola lalandi) being the least at risk. This study provides critical guid- ance for scientists, resource managers and stakeholders for future research, both in addressing key knowledge gaps and focussing the development of more detailed risk analyses for high risk aquaculture industries in south-east Australia.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Pecl, Gretta T.; Ward, Tim M.; Doubleday, Zoë A.; Clarke, Steven; Day, Jemery; Dixon, Cameron; Frusher, Stewart; Gibbs, Philip; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah; Jones, Keith; Li, Xiaoxu; Spooner, Daniel; Stoklosa, Richard;handle: 11541.2/136520 , 2440/97013
Climate change driven alterations in the distribution and abundance of marine species, and the timing of their life history events (phenology), are being reported around the globe. However, we have limited capacity to detect and predict these responses, even for comparatively well studied commercial fishery species. Fisheries provide significant socio-economic benefits for many coastal communities, and early warning of potential changes to fish stocks will provide managers and other stakeholders with the best opportunity to adapt to these impacts. Rapid assessment methods that can estimate the sensitivity of species to climate change in a wide range of contexts are needed. This study establishes an objective, flexible and cost effective framework for prioritising future ecological research and subsequent investment in adaptation responses in the face of resource constraints. We build on an ecological risk assessment framework to assess relative sensitivities of commercial species to climate change drivers, specifically in relation to their distribution, abundance and phenology, and demonstrate our approach using key species within the fast warming region of south-eastern Australia. Our approach has enabled fisheries managers to understand likely changes to fisheries under a range of climate change scenarios, highlighted critical research gaps and priorities, and assisted marine industries to identify adaptation strategies that maximise positive outcomes.
Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Pecl, Gretta T.; Ward, Tim M.; Doubleday, Zoë A.; Clarke, Steven; Day, Jemery; Dixon, Cameron; Frusher, Stewart; Gibbs, Philip; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah; Jones, Keith; Li, Xiaoxu; Spooner, Daniel; Stoklosa, Richard;handle: 11541.2/136520 , 2440/97013
Climate change driven alterations in the distribution and abundance of marine species, and the timing of their life history events (phenology), are being reported around the globe. However, we have limited capacity to detect and predict these responses, even for comparatively well studied commercial fishery species. Fisheries provide significant socio-economic benefits for many coastal communities, and early warning of potential changes to fish stocks will provide managers and other stakeholders with the best opportunity to adapt to these impacts. Rapid assessment methods that can estimate the sensitivity of species to climate change in a wide range of contexts are needed. This study establishes an objective, flexible and cost effective framework for prioritising future ecological research and subsequent investment in adaptation responses in the face of resource constraints. We build on an ecological risk assessment framework to assess relative sensitivities of commercial species to climate change drivers, specifically in relation to their distribution, abundance and phenology, and demonstrate our approach using key species within the fast warming region of south-eastern Australia. Our approach has enabled fisheries managers to understand likely changes to fisheries under a range of climate change scenarios, highlighted critical research gaps and priorities, and assisted marine industries to identify adaptation strategies that maximise positive outcomes.
Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climatic Change arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1284-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Funded by:ARC | Conservation planning: in...ARC| Conservation planning: incorporating patch dynamics and climate change to achieve better outcomesThomas H. Holmes; Gretta T. Pecl; Zoë A. Doubleday; Zoë A. Doubleday; Natalie C. Ban; Elizabeth M. P. Madin; Franz Smith;handle: 11541.2/136529 , 2440/72742
Climate change is leading to a redistribution of marine species, altering ecosystem dynamics as species extend or shift their geographic ranges polewards with warming waters. In marine systems, range shifts have been observed in a wide diversity of species and ecosystems and are predicted to become more prevalent as environmental conditions continue to change. Large-scale shifts in the ranges of marine species will likely have dramatic socio-economic and management implications. Australia provides a unique setting in which to examine the range of consequences of climate-induced range shifts because it encompasses a diverse range of ecosystems, spanning tropical to temperate systems, within a single nation and is home to global sea surface temperature change ‘hotspots’ (where range shifts are particularly likely to occur). We draw on global examples with a particular emphasis on Australian cases to evaluate these consequences. We show that in Australia, range shifts span a variety of ecosystem types, trophic levels, and perceived outcomes (i.e., negative versus positive). The effect(s) of range shifts on socio-economic change variables are rarely reviewed, yet have the potential to have positive and/or negative effects on economic activities, human health and ecosystem services. Even less information exists about potential management responses to range-shifting species. However, synthesis of these diverse examples provides some initial guidance for selecting effective adaptive response strategies and management tools in the face of continuing climate-mediated range shifts.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Funded by:ARC | Conservation planning: in...ARC| Conservation planning: incorporating patch dynamics and climate change to achieve better outcomesThomas H. Holmes; Gretta T. Pecl; Zoë A. Doubleday; Zoë A. Doubleday; Natalie C. Ban; Elizabeth M. P. Madin; Franz Smith;handle: 11541.2/136529 , 2440/72742
Climate change is leading to a redistribution of marine species, altering ecosystem dynamics as species extend or shift their geographic ranges polewards with warming waters. In marine systems, range shifts have been observed in a wide diversity of species and ecosystems and are predicted to become more prevalent as environmental conditions continue to change. Large-scale shifts in the ranges of marine species will likely have dramatic socio-economic and management implications. Australia provides a unique setting in which to examine the range of consequences of climate-induced range shifts because it encompasses a diverse range of ecosystems, spanning tropical to temperate systems, within a single nation and is home to global sea surface temperature change ‘hotspots’ (where range shifts are particularly likely to occur). We draw on global examples with a particular emphasis on Australian cases to evaluate these consequences. We show that in Australia, range shifts span a variety of ecosystem types, trophic levels, and perceived outcomes (i.e., negative versus positive). The effect(s) of range shifts on socio-economic change variables are rarely reviewed, yet have the potential to have positive and/or negative effects on economic activities, human health and ecosystem services. Even less information exists about potential management responses to range-shifting species. However, synthesis of these diverse examples provides some initial guidance for selecting effective adaptive response strategies and management tools in the face of continuing climate-mediated range shifts.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2011.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Australia, SpainPublisher:Frontiers Media SA Rui Rosa; Rui Rosa; Zoe Doubleday; Michael J. Kuba; Jan M. Strugnell; Erica A. G. Vidal; Roger Villanueva;Editorial on the Research Topic Cephalopods in the Anthropocene: multiple challenges in a changing ocean.-- 4 pages, 1 figure The Anthropocene describes the new geological epoch driven by humankind (Lewis and Maslin, 2015). Overfishing, pollution, and climate change are some of the unquestionable human-driven threats to ocean biodiversity (Pauly et al., 1998; Poloczanska et al., 2013; Steneck and Pauly, 2019; Sampaio et al., 2021) and within the notion of winners and losers of global change, there is evidence that some cephalopod populations may be benefiting from this changing ocean (Doubleday et al., 2016; Oesterwind et al., 2022). Within this context, this Research Topic (RT) aimed to compile the latest advances in cephalopod research, covering a wide range of disciplines, and encompassing different levels of biological organization (from molecules to ecosystems). Authors who contributed to the triennial Cephalopod International Advisory Council (CIAC) Meeting held in Sesimbra (Portugal), in April 2022, were especially encouraged to submit their findings here. CIAC 2022 provided a forum to discuss global issues related to human impacts while presenting the latest advances in cephalopod research. The meeting encompassed 90 oral presentations and 145 posters, grouped into eight topic sessions (Figure 1A), with 166 participants in person and 109 participants online, from 33 countries (Figure 1B) With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) Peer reviewed
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 62visibility views 62 download downloads 81 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Australia, SpainPublisher:Frontiers Media SA Rui Rosa; Rui Rosa; Zoe Doubleday; Michael J. Kuba; Jan M. Strugnell; Erica A. G. Vidal; Roger Villanueva;Editorial on the Research Topic Cephalopods in the Anthropocene: multiple challenges in a changing ocean.-- 4 pages, 1 figure The Anthropocene describes the new geological epoch driven by humankind (Lewis and Maslin, 2015). Overfishing, pollution, and climate change are some of the unquestionable human-driven threats to ocean biodiversity (Pauly et al., 1998; Poloczanska et al., 2013; Steneck and Pauly, 2019; Sampaio et al., 2021) and within the notion of winners and losers of global change, there is evidence that some cephalopod populations may be benefiting from this changing ocean (Doubleday et al., 2016; Oesterwind et al., 2022). Within this context, this Research Topic (RT) aimed to compile the latest advances in cephalopod research, covering a wide range of disciplines, and encompassing different levels of biological organization (from molecules to ecosystems). Authors who contributed to the triennial Cephalopod International Advisory Council (CIAC) Meeting held in Sesimbra (Portugal), in April 2022, were especially encouraged to submit their findings here. CIAC 2022 provided a forum to discuss global issues related to human impacts while presenting the latest advances in cephalopod research. The meeting encompassed 90 oral presentations and 145 posters, grouped into eight topic sessions (Figure 1A), with 166 participants in person and 109 participants online, from 33 countries (Figure 1B) With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) Peer reviewed
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 62visibility views 62 download downloads 81 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.3389/fphys.2023.1250233Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAOther literature type . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2023.1250233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Using ancient fish ear bo..., ARC | Changing perspective: usi...ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populations ,ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndromeMazloumi, N.; Burch, P.; Fowler, A.; Doubleday, Z.; Gillanders, B.;handle: 11541.2/136494 , 2440/107470
Otoliths of fish can provide long-term chronologies of growth. Differences in the width of the annual growth increments can reflect the effects of environmental variability on somatic growth rate. We used generalized linear mixed models (GLMM) to evaluate the influence of region, sea surface temperature (SST), El Nino–Southern Oscillation events, and recruitment on the otolith growth of King George whiting (Sillaginodes punctatus), a commercially and recreationally important fish species in southern Australia. Growth increment data spanned 25 years (1985–2010). The optimal model demonstrated that mean winter SST was negatively correlated to growth, and as the winter SST increased the average width of the growth increments declined. However, the temperature effect was very weak (r2: 0.0006). There were no regional growth differences and recruitment was not correlated with growth. Understanding long-term temperature-growth relationships is crucial for disentangling the effects of climate change and other parameters on fish growth, and thus predicting how populations will change in the future.
Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Using ancient fish ear bo..., ARC | Changing perspective: usi...ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populations ,ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndromeMazloumi, N.; Burch, P.; Fowler, A.; Doubleday, Z.; Gillanders, B.;handle: 11541.2/136494 , 2440/107470
Otoliths of fish can provide long-term chronologies of growth. Differences in the width of the annual growth increments can reflect the effects of environmental variability on somatic growth rate. We used generalized linear mixed models (GLMM) to evaluate the influence of region, sea surface temperature (SST), El Nino–Southern Oscillation events, and recruitment on the otolith growth of King George whiting (Sillaginodes punctatus), a commercially and recreationally important fish species in southern Australia. Growth increment data spanned 25 years (1985–2010). The optimal model demonstrated that mean winter SST was negatively correlated to growth, and as the winter SST increased the average width of the growth increments declined. However, the temperature effect was very weak (r2: 0.0006). There were no regional growth differences and recruitment was not correlated with growth. Understanding long-term temperature-growth relationships is crucial for disentangling the effects of climate change and other parameters on fish growth, and thus predicting how populations will change in the future.
Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fisheries Research arrow_drop_down UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fishres.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, United Kingdom, Australia, South Africa, South Africa, AustraliaPublisher:Elsevier BV Authors: Doubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; +7 AuthorsDoubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; Semmens, Jayson; Steer, Michael; Leporati, Stephen C.; Lourenco, Silvia; Quetglas, Antoni; Sauer, Warwick; Gillanders, Bronwyn M.;pmid: 27218844
handle: 10508/10625 , 10261/323268 , 11541.2/136859 , 10962/124560 , 2164/8676
Human activities have substantially changed the world's oceans in recent decades, altering marine food webs, habitats and biogeochemical processes [1]. Cephalopods (squid, cuttlefish and octopuses) have a unique set of biological traits, including rapid growth, short lifespans and strong life-history plasticity, allowing them to adapt quickly to changing environmental conditions [2-4]. There has been growing speculation that cephalopod populations are proliferating in response to a changing environment, a perception fuelled by increasing trends in cephalopod fisheries catch [4,5]. To investigate long-term trends in cephalopod abundance, we assembled global time-series of cephalopod catch rates (catch per unit of fishing or sampling effort). We show that cephalopod populations have increased over the last six decades, a result that was remarkably consistent across a highly diverse set of cephalopod taxa. Positive trends were also evident for both fisheries-dependent and fisheries-independent time-series, suggesting that trends are not solely due to factors associated with developing fisheries. Our results suggest that large-scale, directional processes, common to a range of coastal and oceanic environments, are responsible. This study presents the first evidence that cephalopod populations have increased globally, indicating that these ecologically and commercially important invertebrates may have benefited from a changing ocean environment.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 248 citations 248 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 54 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, United Kingdom, Australia, South Africa, South Africa, AustraliaPublisher:Elsevier BV Authors: Doubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; +7 AuthorsDoubleday, Zoë A.; Prowse, Thomas A. A.; Arkhipkin, Alexander; Pierce, Graham J.; Semmens, Jayson; Steer, Michael; Leporati, Stephen C.; Lourenco, Silvia; Quetglas, Antoni; Sauer, Warwick; Gillanders, Bronwyn M.;pmid: 27218844
handle: 10508/10625 , 10261/323268 , 11541.2/136859 , 10962/124560 , 2164/8676
Human activities have substantially changed the world's oceans in recent decades, altering marine food webs, habitats and biogeochemical processes [1]. Cephalopods (squid, cuttlefish and octopuses) have a unique set of biological traits, including rapid growth, short lifespans and strong life-history plasticity, allowing them to adapt quickly to changing environmental conditions [2-4]. There has been growing speculation that cephalopod populations are proliferating in response to a changing environment, a perception fuelled by increasing trends in cephalopod fisheries catch [4,5]. To investigate long-term trends in cephalopod abundance, we assembled global time-series of cephalopod catch rates (catch per unit of fishing or sampling effort). We show that cephalopod populations have increased over the last six decades, a result that was remarkably consistent across a highly diverse set of cephalopod taxa. Positive trends were also evident for both fisheries-dependent and fisheries-independent time-series, suggesting that trends are not solely due to factors associated with developing fisheries. Our results suggest that large-scale, directional processes, common to a range of coastal and oceanic environments, are responsible. This study presents the first evidence that cephalopod populations have increased globally, indicating that these ecologically and commercially important invertebrates may have benefited from a changing ocean environment.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 248 citations 248 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 54 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/8676Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2016License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCurrent BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 AustraliaPublisher:Public Library of Science (PLoS) Zoë A. Doubleday; Alice R. Jones; Marty R. Deveney; Tim M. Ward; Bronwyn M. Gillanders;Identifying the relative risk human activities pose to a habitat, and the ecosystem services they provide, can guide management prioritisation and resource allocation. Using a combination of expert elicitation to assess the probable effect of a threat and existing data to assess the level of threat exposure, we conducted a risk assessment for 38 human-mediated threats to eight marine habitats (totalling 304 threat-habitat combinations) in Spencer Gulf, Australia. We developed a score-based survey to collate expert opinion and assess the relative effect of each threat to each habitat, as well as a novel and independent measure of knowledge-based uncertainty. Fifty-five experts representing multiple sectors and institutions participated in the study, with 6 to 15 survey responses per habitat (n = 81 surveys). We identified key threats specific to each habitat; overall, climate change threats received the highest risk rankings, with nutrient discharge identified as a key local-scale stressor. Invasive species and most fishing-related threats, which are commonly identified as major threats to the marine environment, were ranked as low-tier threats to Spencer Gulf, emphasising the importance of regionally-relevant assessments. Further, we identified critical knowledge gaps and quantified uncertainty scores for each risk. Our approach will facilitate prioritisation of resource allocation in a region of increasing social, economic and environmental importance, and can be applied to marine regions where empirical data are lacking.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 AustraliaPublisher:Public Library of Science (PLoS) Zoë A. Doubleday; Alice R. Jones; Marty R. Deveney; Tim M. Ward; Bronwyn M. Gillanders;Identifying the relative risk human activities pose to a habitat, and the ecosystem services they provide, can guide management prioritisation and resource allocation. Using a combination of expert elicitation to assess the probable effect of a threat and existing data to assess the level of threat exposure, we conducted a risk assessment for 38 human-mediated threats to eight marine habitats (totalling 304 threat-habitat combinations) in Spencer Gulf, Australia. We developed a score-based survey to collate expert opinion and assess the relative effect of each threat to each habitat, as well as a novel and independent measure of knowledge-based uncertainty. Fifty-five experts representing multiple sectors and institutions participated in the study, with 6 to 15 survey responses per habitat (n = 81 surveys). We identified key threats specific to each habitat; overall, climate change threats received the highest risk rankings, with nutrient discharge identified as a key local-scale stressor. Invasive species and most fishing-related threats, which are commonly identified as major threats to the marine environment, were ranked as low-tier threats to Spencer Gulf, emphasising the importance of regionally-relevant assessments. Further, we identified critical knowledge gaps and quantified uncertainty scores for each risk. Our approach will facilitate prioritisation of resource allocation in a region of increasing social, economic and environmental importance, and can be applied to marine regions where empirical data are lacking.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2440/124312Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0177393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Future Fellowships - ...ARC| ARC Future Fellowships - Grant ID: FT190100244Authors: Jade Lindley; Emily De Sousa; Zoe Doubleday; Patrick Reis-Santos;Seafood is an important source of protein and micronutrients, but fishery stocks are increasingly under pressure from both legitimate and illegitimate fishing practices. Sustainable management of our oceans is a global responsibility, aligning with United Nations Sustainable Development Goal 14, Life Below Water. In a post-COVID-19 world, there is an opportunity to build back better, where locally sourced food via transparent supply chains are ever-more important. This article summarises emerging research of two innovative case studies in detecting and validating seafood provenance; and using alternative supply chains to minimise the opportunity for seafood fraud in a post-COVID-19 world.
PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Future Fellowships - ...ARC| ARC Future Fellowships - Grant ID: FT190100244Authors: Jade Lindley; Emily De Sousa; Zoe Doubleday; Patrick Reis-Santos;Seafood is an important source of protein and micronutrients, but fishery stocks are increasingly under pressure from both legitimate and illegitimate fishing practices. Sustainable management of our oceans is a global responsibility, aligning with United Nations Sustainable Development Goal 14, Life Below Water. In a post-COVID-19 world, there is an opportunity to build back better, where locally sourced food via transparent supply chains are ever-more important. This article summarises emerging research of two innovative case studies in detecting and validating seafood provenance; and using alternative supply chains to minimise the opportunity for seafood fraud in a post-COVID-19 world.
PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PubMed Central arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2023 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-022-09747-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Qiaz Q. H. Hua; Dietmar Kültz; Kathryn Wiltshire; Zoe A. Doubleday; Bronwyn M. Gillanders;doi: 10.1111/gcb.17255
pmid: 38572638
AbstractGlobal warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S‐crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non‐essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Qiaz Q. H. Hua; Dietmar Kültz; Kathryn Wiltshire; Zoe A. Doubleday; Bronwyn M. Gillanders;doi: 10.1111/gcb.17255
pmid: 38572638
AbstractGlobal warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S‐crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non‐essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Changing perspective: usi..., ARC | Using ancient fish ear bo...ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndrome ,ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populationsDoubleday, Z.; Izzo, C.; Haddy, J.; Lyle, J.; Ye, Q.; Gillanders, B.;Long-term ecological datasets are vital for investigating how species respond to changes in their environment, yet there is a critical lack of such datasets from aquatic systems. We developed otolith growth 'chronologies' to reconstruct the growth history of a temperate estuarine fish species, black bream (Acanthopagrus butcheri). Chronologies represented two regions in south-east Australia: South Australia, characterised by a relatively warm, dry climate, and Tasmania, characterised by a relatively cool, wet climate. Using a mixed modelling approach, we related inter-annual growth variation to air temperature, rainfall, freshwater inflow (South Australia only), and El Niño-Southern Oscillation events. Otolith chronologies provided a continuous record of growth over a 13- and 21-year period for fish from South Australia and Tasmania, respectively. Even though fish from Tasmania were sourced across multiple estuaries, they showed higher levels of growth synchronicity across years, and greater year-to-year growth variation, than fish from South Australia, which were sourced from a single, large estuary. Growth in Tasmanian fish declined markedly over the time period studied and was negatively correlated to temperature. In contrast, growth in South Australian fish was positively correlated to both temperature and rainfall. The stark contrast between the two regions suggests that Tasmanian black bream populations are more responsive to regional scale environmental variation and may be more vulnerable to global warming. This study highlights the importance of examining species response to climate change at the intra-specific level and further validates the emerging use of growth chronologies for generating long-term ecological data in aquatic systems.
Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Changing perspective: usi..., ARC | Using ancient fish ear bo...ARC| Changing perspective: using fish ear bones to counteract the shifting baseline syndrome ,ARC| Using ancient fish ear bones to overcome the shifting baseline syndrome in freshwater fish populationsDoubleday, Z.; Izzo, C.; Haddy, J.; Lyle, J.; Ye, Q.; Gillanders, B.;Long-term ecological datasets are vital for investigating how species respond to changes in their environment, yet there is a critical lack of such datasets from aquatic systems. We developed otolith growth 'chronologies' to reconstruct the growth history of a temperate estuarine fish species, black bream (Acanthopagrus butcheri). Chronologies represented two regions in south-east Australia: South Australia, characterised by a relatively warm, dry climate, and Tasmania, characterised by a relatively cool, wet climate. Using a mixed modelling approach, we related inter-annual growth variation to air temperature, rainfall, freshwater inflow (South Australia only), and El Niño-Southern Oscillation events. Otolith chronologies provided a continuous record of growth over a 13- and 21-year period for fish from South Australia and Tasmania, respectively. Even though fish from Tasmania were sourced across multiple estuaries, they showed higher levels of growth synchronicity across years, and greater year-to-year growth variation, than fish from South Australia, which were sourced from a single, large estuary. Growth in Tasmanian fish declined markedly over the time period studied and was negatively correlated to temperature. In contrast, growth in South Australian fish was positively correlated to both temperature and rainfall. The stark contrast between the two regions suggests that Tasmanian black bream populations are more responsive to regional scale environmental variation and may be more vulnerable to global warming. This study highlights the importance of examining species response to climate change at the intra-specific level and further validates the emerging use of growth chronologies for generating long-term ecological data in aquatic systems.
Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down UniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-015-3411-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Inter-Research Science Center Doubleday, Zoë A.; Clarke, Steven M.; Li, Xiaoxu; Pecl, Gretta T.; Ward, Tim M.; Battaglene, Stephen; Frusher, Stewart; Gibbs, Philip J.; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah M.; Stoklosa, Richard;doi: 10.3354/aei00058
handle: 11541.2/136533 , 2440/81458
A qualitative screening-level risk assessment was developed to evaluate relative lev- els of risk from climate change to aquaculture industries. The assessment was applied to 7 major industries in the temperate south-east region of Australia and involved a simple, transparent and repeatable methodology that was appropriate for a range of different aquaculture systems and taxa. Two key stages were involved: the development of comprehensive expertise-based litera- ture reviews or 'species profiles' and a scoring assessment, with the latter providing a defined framework within which industries could be ranked (from high to low risk). In addition to inform- ing the second stage of the risk assessment process, the species' profiles also highlighted impor- tant climate change drivers and key information uncertainties and knowledge gaps. There was good resolution among the scoring assessments, with only 2 industries receiving the same risk score. The results indicated that oysters farmed from wild spat (Sydney rock oysters Saccostrea glomerata) were at most risk to climate change, with warm temperate hatchery-based finfish spe- cies (yellowtail kingfish Seriola lalandi) being the least at risk. This study provides critical guid- ance for scientists, resource managers and stakeholders for future research, both in addressing key knowledge gaps and focussing the development of more detailed risk analyses for high risk aquaculture industries in south-east Australia.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Inter-Research Science Center Doubleday, Zoë A.; Clarke, Steven M.; Li, Xiaoxu; Pecl, Gretta T.; Ward, Tim M.; Battaglene, Stephen; Frusher, Stewart; Gibbs, Philip J.; Hobday, Alistair J.; Hutchinson, Neil; Jennings, Sarah M.; Stoklosa, Richard;doi: 10.3354/aei00058
handle: 11541.2/136533 , 2440/81458
A qualitative screening-level risk assessment was developed to evaluate relative lev- els of risk from climate change to aquaculture industries. The assessment was applied to 7 major industries in the temperate south-east region of Australia and involved a simple, transparent and repeatable methodology that was appropriate for a range of different aquaculture systems and taxa. Two key stages were involved: the development of comprehensive expertise-based litera- ture reviews or 'species profiles' and a scoring assessment, with the latter providing a defined framework within which industries could be ranked (from high to low risk). In addition to inform- ing the second stage of the risk assessment process, the species' profiles also highlighted impor- tant climate change drivers and key information uncertainties and knowledge gaps. There was good resolution among the scoring assessments, with only 2 industries receiving the same risk score. The results indicated that oysters farmed from wild spat (Sydney rock oysters Saccostrea glomerata) were at most risk to climate change, with warm temperate hatchery-based finfish spe- cies (yellowtail kingfish Seriola lalandi) being the least at risk. This study provides critical guid- ance for scientists, resource managers and stakeholders for future research, both in addressing key knowledge gaps and focussing the development of more detailed risk analyses for high risk aquaculture industries in south-east Australia.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2013Full-Text: http://dx.doi.org/10.3354/aei00058Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/aei00058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu