
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rapid assessment of fisheries species sensitivity to climate change

handle: 11541.2/136520 , 2440/97013
Climate change driven alterations in the distribution and abundance of marine species, and the timing of their life history events (phenology), are being reported around the globe. However, we have limited capacity to detect and predict these responses, even for comparatively well studied commercial fishery species. Fisheries provide significant socio-economic benefits for many coastal communities, and early warning of potential changes to fish stocks will provide managers and other stakeholders with the best opportunity to adapt to these impacts. Rapid assessment methods that can estimate the sensitivity of species to climate change in a wide range of contexts are needed. This study establishes an objective, flexible and cost effective framework for prioritising future ecological research and subsequent investment in adaptation responses in the face of resource constraints. We build on an ecological risk assessment framework to assess relative sensitivities of commercial species to climate change drivers, specifically in relation to their distribution, abundance and phenology, and demonstrate our approach using key species within the fast warming region of south-eastern Australia. Our approach has enabled fisheries managers to understand likely changes to fisheries under a range of climate change scenarios, highlighted critical research gaps and priorities, and assisted marine industries to identify adaptation strategies that maximise positive outcomes.
- World Wide Fund for Nature Colombia
- University of Tasmania Australia
- James Cook University Australia
- Raytheon Intelligence and Information Systems United States
- CSIRO Ocean and Atmosphere Australia
climate change, fish species, 333
climate change, fish species, 333
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).99 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
